精英家教网 > 高中数学 > 题目详情
精英家教网如图,在△ABC中,D、E、F分别是各边的中点,AD交EF于点G,则下列各式能表示向量
DG
的有①
1
2
(
DE
+
DF
)
,②
1
2
(
CF
+
BE
)
,③
1
2
(
BF
+
CE
)
,④-
1
4
(
AB
+
AC
)
(  )
A、1个B、2个C、3个D、4个
分析:先由D、E、F分别是各边的中点,得出四边形AFDE是平行四边形,根据向量加法的平行四边形法则得出①正确;②③④两式均可能利用向量加法的三角形法则转化为①,从而即可判断它们的正确性.
解答:解:∵D、E、F分别是各边的中点,
∴四边形AFDE是平行四边形,
DG
=
1
2
(
DE
+
DF
)
,①正确;
1
2
(
CF
+
BE
)
=
1
2
(
CD
+
DF
+
BD
+
DE
)
=
1
2
(
DE
+
DF
)
,故②正确;
1
2
(
BF
+
CE
)
=
1
2
(
BE
+
EF
+
CF
+
FE
)
=
1
2
(
CF
+
BE
)
,故③正确;
-
1
4
(
AB
+
AC
)
=-
1
2
(
AF
+
AE
)
=
1
2
(
DE
+
DF
)
,故④正确.
故选D.
点评:本题主要考查了平面向量的基本定理、向量加法的平行四边形法则和三角形法则,解答的关键是灵活应用这两个法则表示向量.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案