精英家教网 > 高中数学 > 题目详情

【题目】已知函数,给出下列四个结论:

①函数的最小正周期是

②函数在区间上是减函数;

③函数的图象关于直线对称;

④函数的图象可由函数的图象向左平移个单位得到其中所有正确结论的编号是(

A.①②B.①③C.①②③D.①③④

【答案】C

【解析】

根据降幂公式和辅助角公式化简三角函数式,结合正弦函数的图像与性质即可判断各选项是否正确.

由降幂公式和辅助角公式化简可得

对于①,由解析式可知最小正周期为,所以①正确;

对于②,由函数解析式可知,满足时单调递减,解得,当时,单调递减区间为,所以②正确;

对于③,由函数解析式可知对称轴满足,解得,所以当时,对称轴为,所以③正确;

对于④,函数的图象向左平移个单位可得,与所求解析式不同,因而④错误,

综上可知,正确的为①②③,

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数的解析式来琢磨函数的图象特征.如函数的图象大致为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,平面平面.

1)求证:平面

2)求证:平面

3)在棱上是否存在一点E,使得二面角的大小为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,.

1)求证:

2)若的中点,求平面将三棱锥分成的两部分几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,来自一带一路沿线的20国青年评选出了中国的新四大发明:高铁、扫码支付、共享单车和网购.其中共享单车既响应绿色出行号召,节能减排,保护环境,又方便人们短距离出行,增强灵活性.某城市试投放3个品牌的共享单车分别为红车、黄车、蓝车,三种车的计费标准均为每15分钟(不足15分钟按15分钟计)1元,按每日累计时长结算费用,例如某人某日共使用了24分钟,系统计时为30分钟.A同学统计了他1个月(按30天计)每天使用共享单车的时长如茎叶图所示,不考虑每月自然因素和社会因素的影响,用频率近似代替概率.设A同学每天消费元.

1)求的分布列及数学期望;

2)各品牌为推广用户使用,推出APP注册会员的优惠活动:红车月功能使用费8元,每天消费打5折;黄车月功能使用费20元,每天前15分钟免费,之后消费打8折;蓝车月功能使用费45元,每月使用22小时之内免费,超出部分按每15分钟1元计费.设分别为红车,黄车,蓝车的月消费,写出的函数关系式,参考(1)的结果,A同学下个月选择其中一个注册会员,他选哪个费用最低?

3)该城市计划3个品牌的共享单车共3000辆正式投入使用,为节约居民开支,随机调查了100名用户一周的平均使用时长如下表:

时长

(015]

(1530]

(3045]

(4560]

人数

16

45

34

5

在(2)的活动条件下,每个品牌各应该投放多少辆?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某学校研究性课题《什么样的活动最能促进同学们进行垃圾分类》向题的统计图(每个受访者都只能在问卷的5个活动中选择一个),以下结论错误的是(  )

A. 回答该问卷的总人数不可能是100

B. 回答该问卷的受访者中,选择“设置分类明确的垃圾桶”的人数最多

C. 回答该问卷的受访者中,选择“学校团委会宣传”的人数最少

D. 回答该问卷的受访者中,选择“公益广告”的人数比选择“学校要求”的少8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,抛物线上的点到准线的最小距离为2.

1)求抛物线的方程;

2)若过点作互相垂直的两条直线与抛物线交于两点,与抛物线交于两点,分别为弦的中点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面平面,四边形是正方形,点分别是棱的中点,.

1)求证:

2)求二面角的余弦值;

3)若点在棱上,且,判断平面与平面是否平行,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线,直线l的参数方程为:t为参数),直线l与曲线C分别交于两点.

1)写出曲线C和直线l的普通方程;

2)若点,求的值.

查看答案和解析>>

同步练习册答案