精英家教网 > 高中数学 > 题目详情
设变量x,y满足约束条件
2x-y+2≥0
2x+y-2≥0
x-2y-1≤0
,则目标函数z=x+y(  )
A、有最小值-3,最大值2
B、有最小值1,无最大值
C、有最大值2,无最小值
D、既无最小值,也无最大值
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
由z=x+y得y=-x+z,
平移直线y=-x+z,
由图象可知当直线y=-x+z经过点C(1,0)时,直线的截距最小,此时z最小,无最大值,
此时最小值z=1+0=1,
故选:B
点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

中心在原点,坐标轴为对称轴的椭圆,以直线3x+4y-12=0与坐标轴的交点为顶点和焦点,则此椭圆方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设m、n是两条不同的直线,α、β、γ是三个不同的平面,给出下列四个命题:
①若α∥β,α∥γ,则β∥γ;
②若α⊥β,m∥α,则m⊥β;
③若m⊥α,m∥β,则α⊥β;
④若m∥n,n?α,则m∥α.
其中正确命题的序号是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=1,a2=1,an+an+2=n+1(n∈N*),若{an}前n项和为Sn,则S100=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司生产甲、乙两种桶装产品,已知生产甲产品1桶需耗A原料3千克,B原料1千克;生产乙产品1桶需耗A原料1千克,B原料3千克.每生产一桶甲产品的利润400元,每生产一桶乙产品的利润300元,公司在生产这两种产品的计划中,每天消耗A、B原料都不超过12千克,通过合理安排生产计划,公司每天可获得的最大利润是(单位:元)(  )
A、1600B、2100
C、2800D、4800

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>b,则下列不等式正确的是(  )
A、a-3>b-2
B、a+2>b+1
C、ac>bc
D、
1
a
1
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xOy中,曲线E的参数方程为
x=
3
+3cosθ
y=1+3sinθ
(θ为参数),以原点作为极点,x轴的正半轴为极轴建立极坐标系且单位长度相同,直线L过极轴上一点M(2,0)且L向上的方向与极轴的正方向成
5
6
π.
(1)写出L的极坐标方程;
(2)求直线L被曲线E截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,a+2b=1,求s=a2+4b2+
ab
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知log32=a,则(
1
9
a+1=
 

查看答案和解析>>

同步练习册答案