精英家教网 > 高中数学 > 题目详情
(2011•福建模拟)已知函数f(x)=2x-2lnx
(Ⅰ)求函数在(1,f(1))的切线方程
(Ⅱ)求函数f(x)的极值
(Ⅲ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x0,y0),且x1<x0<x2,使得曲线在点Q处的切线l∥P1P2,则称l为弦P1P2的陪伴切线.已知两点A(1,f(1)),B(e,f(e)),试求弦AB的陪伴切线l的方程.
分析:(I)利用切线的斜率是函数在切点处导数,求出切线斜率,再利用直线方程的点斜式求出切线方程.
(II)首先对函数求导,使得导函数等于0,解出x的值,分两种情况讨论:当f′(x)>0,即x>1;当f′(x)<0,即0<x<1时,列表做出函数的极值点,求出极值.
(III)设出切点坐标,根据坐标表示出切线的斜率,然后把切点的横坐标代入到曲线的导函数中得到切线的斜率,根据伴随切线的含义写出弦AB的伴随切线l的方程即可.
解答:解:(I)∵y=2x-2lnx,∴y′=2-2×
1
x

∴函数y=2x-2lnx在x=1处的切线斜率为0,
又∵切点坐标为(1,2)
切线方程为y=2;
(Ⅱ)f′(x)=2-
2
x
,x>0
.…(6分)
f′(x)=0,得x=1.
当x变化时,f′(x)与f(x)变化情况如下表:
 x (0,1) 1 (1,+∞)
f′(x) - 0 +
f(x) 单调递减 极小值 单调递增
∴当x=1时,f(x)取得极小值f(1)=2.    没有极大值. …(9分)
(Ⅲ)设切点Q(x0,y0),则切线l的斜率为f′(x0)=2-
2
x0
x0∈(1,e)

弦AB的斜率为kAB=
f(e)-f(1)
e-1
=
2(e-1)-2(1-0)
e-1
=2-
2
e-1
. …(10分)
由已知得,l∥AB,则2-
2
x0
=2-
2
e-1
,解得x0=e-1,代入函数式得y0=2(e-1)-2ln(e-1)
解出切点坐标(e-1,2(e-1)-2ln(e-1))…(12分)
再由点斜式写出方程y-2(e-1)+2ln(e-1)=
2e-4
e-1
(x-e-1),即:y=
2e-4
e-1
x+2-2ln(e-1)

所以,弦AB的伴随切线l的方程为:y=
2e-4
e-1
x+2-2ln(e-1)
.…(13分)
点评:本题考查利用导数研究曲线上某点切线方程、函数极值的求法,本题解题的关键是对函数求导,求出导函数等于0时对应的变量的取值,再进行讨论,本题是一个中档题目,这个知识点一般出现在综合题目中.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•福建模拟)如图,单位圆(半径为1的圆)的圆心O为坐标原点,单位圆与y轴的正半轴交与点A,与钝角α的终边OB交于点B(xB,yB),设∠BAO=β.
(1)用β表示α; 
(2)如果sinβ=
45
,求点B(xB,yB)的坐标;
(3)求xB-yB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•福建模拟)选修4-4:坐标系与参数方程
已知曲线C的极坐标方程为ρ2=
364cos2θ+9sin2θ

(Ⅰ)若以极点为原点,极轴所在的直线为x轴,求曲线C的直角坐标方程.
(Ⅱ)若P(x,y)是曲线C上的一个动点,求3x+4y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•福建模拟)给出以下四个结论:
(1)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2
(2)曲线y=1+
4-x2
(|x|≤2)
与直线y=k(x-2)+4有两个交点时,实数k的取值范围是(
5
12
3
4
]

(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,则3b-2a>1;
(4)若将函数f(x)=sin(2x-
π
3
)
的图象向右平移?(?>0)个单位后变为偶函数,则?的最小值是
π
12
,其中正确的结论是:
(2)(3)(4)
(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•福建模拟)如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=
12
CD=1

现以AD为一边向形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图2.
(1)求证:AM∥平面BEC;
(2)求证:BC⊥平面BDE;
(3)求三棱锥D-BCE的体积.

查看答案和解析>>

同步练习册答案