【题目】给出下列四个命题中:
①命题: ;
②函数f(x)=2x﹣x2有三个零点;
③对(x,y)∈{(x,y)|4x+3y﹣10=0},则x2+y2≥4.
④已知函数 ,若△ABC中,角C是钝角,那么f(sinA)>f(cosB)
其中所有真命题的序号是 .
【答案】①②③④
【解析】解: ,故①对;
画出函数y=2x , y=x2的图象如下图,
可知②对;
圆x2+y2=4的圆心(0,0)到4x+3y﹣10=0的距离d= =2,
故(x,y)∈{(x,y)|4x+3y﹣10=0},均有x2+y2≥4,
故③正确,
因为 ,
故 ,
所以1>cosB>sinA>0,
又因为f(x)在(0,1)上单调递减.
故f(sinA)>f(cosB),即④正确;
故真命题的序号有:①②③④,
所以答案是:①②③④.
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
科目:高中数学 来源: 题型:
【题目】食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入种黄瓜的年收入与投入(单位:万元)满足.设甲大棚的投入为(单位:万元),每年两个大棚的总收益为(单位:万元)
(1)求的值;
(2)试问如何安排甲、乙两个大棚的投入,才能使总收益最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={3,a2},集合B={0,b,1﹣a},且A∩B={1},则A∪B=( )
A.{0,1,3}
B.{1,2,4}
C.{0,1,2,3}
D.{0,1,2,3,4}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数y=f(x)在区间D上是增函数,且函数y=在区间D上是减函数,则称函数f(x)是区间D上的“H函数”.对于命题:
①函数f(x)=-x+是区间(0,1)上的“H函数”;
②函数g(x)=是区间(0,1)上的“H函数”.下列判断正确的是( )
A. 和均为真命题 B. 为真命题,为假命题
C. 为假命题,为真命题 D. 和均为假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn}满足2Sn=(an+2)bn,其中Sn是数列{an}的前n项和.
(1)若数列{an}是首项为,公比为-的等比数列,求数列{bn}的通项公式;
(2)若bn=n,a2=3,求证:数列{an}满足an+an+2=2an+1,并写出数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在菱形中, , ,以4个顶点为圆心的扇形的半径为1,若在该菱形中任意选取一点,该点落在阴影部分的概率为,则圆周率的近似值为( )
A. B. C. D.
【答案】C
【解析】因为菱形的内角和为360°,
所以阴影部分的面积为半径为1的圆的面积,
故由几何概型可知,
解得.选C。
【题型】单选题
【结束】
12
【题目】已知函数f(x)=,若g(x)=f(x)-a恰好有3个零点,则a的取值范围为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com