精英家教网 > 高中数学 > 题目详情

【题目】已知某渔船在渔港O的南偏东60°方向,距离渔港约160海里的B处出现险情,此时在渔港的正上方恰好有一架海事巡逻飞机A接到渔船的求救信号,海事巡逻飞机迅速将情况通知了在C处的渔政船并要求其迅速赶往出事地点施救.若海事巡逻飞机测得渔船B的俯角为68.20°,测得渔政船C的俯角为63.43°,且渔政船位于渔船的北偏东60°方向上.

)计算渔政船C与渔港O的距离;

)若渔政船以每小时25海里的速度直线行驶,能否在3小时内赶到出事地点?

(参考数据:sin68.20°≈0.93tan68.20°≈2.50shin63.43°≈0.90tan63.43°≈2.00 ≈3.62 ≈3.61

【答案】1; 2可在3小时内赶到出事地点

【解析】试题分析:(1),结合正切的定义可求得得 海里

再由余弦定理得

(2) 可在3小时内赶到出事地点

试题解析:

1依题意:BO=160海里,

,

海里

中, ,由全余弦定理得

(2)

可在3小时内赶到出事地点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn=3n﹣1.
(1)求a1 , a2 , a3的值;
(2)求数列{an}的通项公式;
(3)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱中,底面为等腰直角三角形, 是侧棱上一点,设

(1) 若,求的值;

(2) 若,求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是三个内角的对边.

(1),求的值;

(2),试判断的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是公差不为零的等差数列,成等比数列.

(1)求数列的通项公式;

(2)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 底面,底面是直角梯形, 的中点.

1)求证:平面平面

2)若二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示:

其中一个数字被污损.

(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率.

(2)随着节目的播出,极大激发了观众对成语知识的学习积累的热情,从中获益匪浅.现从观看该节目的观众中随机统计了4位观众的周均学习成语知识的时间(单位:小时)与年龄(单位:岁),并制作了对照表(如下表所示)

年龄(岁)

20

30

40

50

周均学习成语知识时间(小时)

2.5

3

4

4.5

由表中数据,试求线性回归方程,并预测年龄为55岁观众周均学习成语知识时间.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.

(1)根据已知条件完成上面的列联表,若按的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?

(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为.若每次抽取的结果是相互独立的,求分布列,期望和方差.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱锥,已知

(1)求此三棱锥内切球的半径.

(2)若是侧面上一点,试在面上过点画一条与棱垂直的线段,并说明理由.

查看答案和解析>>

同步练习册答案