精英家教网 > 高中数学 > 题目详情
已知抛物线的顶点在原点,焦点在y轴的负半轴上,过其上一点P(x0,y0)(x0≠0)的切线方程为y-y0=2ax0(x-x0)(a为常数).
(I)求抛物线方程;
(II)斜率为k1的直线PA与抛物线的另一交点为A,斜率为k2的直线PB与抛物线的另一交点为B(A、B两点不同),且满足k2+λk1=0(λ≠0,λ≠-1),
BM
MA
,求证线段PM的中点在y轴上;
(III)在(II)的条件下,当λ=1,k1<0时,若P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.
(I)由题意可设抛物线的方程为x2=-2py(p>0),
由过点p(x0,y0)(x0≠0)的切线方程为y-y0=2ax0(x-x0),得
y′|x=x0=-
x0
p
=2ax0

因此p=-
1
2a

∴抛物线的方程为y=ax2(a<0).
(II)直线PA的方程为y-y0=k1(x-x0),
y=ax2
y-y0=k1(x-x0).
'
∴ax2-k1x+k1x0-y0=0,∴xA+x0=
k1
a
xA=
k1
a
-x0

同理,可得xB=
k2
a
-x0

∵k2+λk1=0,∴k2=-λk1xB=-
λk1
a
-x0

BM
MA
(λ≠0,λ≠-1)

∴xM-xB=λ(xA-xM),xM=
λxA+xB
1+λ
=-x0

∴线段PM的中点在y轴上.
(III)由λ=1,P(1,-1),可知a=-1.
∴A(-k1-1,-(k1+1)2),B(k1-1,-(k1-1)2).
AP
=(2+k1
k21
+2k1)
AB
=(2k1,4k1)

∵∠PAB为钝角,且P,A,B不共线,
AP
AB
<0

即(2+k1)•2k1+(k12+2k1)•4k1<0.
∴k1(2k12+5k1+2)<0.
∵k1<0,
∴2k12+5k1+2>0.
k1<-2,  或-
1
2
k1<0

又∵点A的纵坐标yA=-(k1+1)2
∴当k1<-2时,yA<-1;
-
1
2
<k1<0时,-1<yA<-
1
4

∴∠PAB为钝角时点A的坐标的取值范围为(-∞,-1)∪(-1,-
1
4
)
练习册系列答案
相关习题

科目:高中数学 来源:天骄之路中学系列 读想用 高二数学(上) 题型:044

已知抛物线C的对称轴与y轴平行,顶点到原点的距离为5,若将抛物线C向上平移3个单位,则在x轴上截得的线段为原抛物线C在x轴上截得的线段的一半;若将抛物线C向左平移1个单位,则所得抛物线过原点,求抛物线C的方程.

查看答案和解析>>

同步练习册答案