分析 (1)由已知中函数的解析式,先求出f(1),再由f(-1)=-f(1)得到f(-1)以及m的值;
(2)由已知中函数的解析式,结合二次函数的图象和性质,可得y=f(x)的图象,数形结合可写出单调区间;
(3)结合y=f(x)的图象,分类讨论不同情况下,y=f(x)的图象与y=2k-1交点的个数,可得答案.
解答 解:(1)f(1)=1,f(-1)=-f(1)=-1,…(1分)
当x<0时,-x>0,f(x)=-(x)2+2(-x)=-x2-2x,又f(x)为奇函数,
f(x)=-f(-x)=x2+2x,
所以m=2.…2分
(2)y=f(x)的图象如图所示.
…(4分)
由图可得:
f(x)的单调递增区间(-1,1),
f(x)的单调递减区间…(-∞,-1),(1,+∞)…(7分)
(3)由(2)中f(x)的图象知:
若函数g(x)=f(x)-2k+1有一个零点,则2k-1>1或2k-1<-1
即k>1或k<0…(9分)
若函数g(x)=f(x)-2k+1有二个零点,则2k-1=1或2k-1=-1
即k=0或k=1…(11分)
若函数g(x)=f(x)-2k+1有三个零点,则-1<2k-1<1
即0<k<1…(13分)
点评 本题考查的知识点是分段函数的应用,函数的奇偶性,函数求值,函数的图象,函数的单调区间,函数的零点,是函数图象和性质的综合应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,1) | C. | (1,2) | D. | (2,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com