【题目】函数.
(1)讨论函数的单调性;
(2)当时,方程在区间内有唯一实数解,求实数的取值范围.
【答案】(1)见解析;(2) 或
【解析】
(1)先求得函数的导函数和定义域,对分成等种情况,分类讨论函数的单调性.(2)将分离常数化为,构造函数,利用导数求得的单调性和最值,由此求得的取值范围.
(1),
(i)当时,,令,得,令,得,
函数在上单调递增,上单调递减;
(ii)当时,令,得,
令,得,令,得,
函数在和上单调递增,上单调递减;
(iii)当时,,函数f(x)在上单调递增;
(iv)当时,
令,得,令,得
函数在和上单调递增,上单调递减;
综上所述:当时,函数的单调递增区间为,单调递减区间为;
当时,函数的单调递增区间为和,单调递减区间为;
当时,函数的单调递增区间为;
当时,函数的单调递增区间为和,单调递减区间为
(2)当时,,由,得,
又,所以,要使方程在区间上有唯一实数解,
只需有唯一实数解,
令,∴,
由得;得,
∴在区间上是增函数,在区间上是减函数.
,,,故或
科目:高中数学 来源: 题型:
【题目】设椭圆的一个焦点为,且椭圆过点,为坐标原点,
(1)求椭圆的标准方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点、,且?若存在,写出该圆的方程,并求的最大值,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数对定义域中任意x均满足,则称函数的图象关于点对称.
(1)已知函数的图象关于点对称,求实数m的值;
(2)已知函数在上的图象关于点对称,且当时,,求函数在上的解析式;
(3)在(1)(2)的条件下,当时,若对任意实数,恒有成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂今年前5个月某种产品的产量(单位:万件)的数据如下表:
(月份) | 1 | 2 | 3 | 4 | 5 |
(产量) | 4 | 5 | 4 | 6 | 6 |
(1)若从这5组数据中随机抽出2组,求抽出的2组数据恰好是不相邻两个月的数据的概率;
(2)求出关于的线性回归方程,并估计今年6月份该种产品的产量.
参考公式:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线C:(θ为参数)相交于不同的两点A,B.
(Ⅰ)若α=,求线段AB中点M的坐标;
(Ⅱ)若|PA|·|PB|=|OP|,其中P(2,),求直线l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,
已知圆和圆.
(1)若直线过点,且被圆截得的弦长为,
求直线的方程;(2)设P为平面上的点,满足:
存在过点P的无穷多对互相垂直的直线和,
它们分别与圆和圆相交,且直线被圆
截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com