【题目】如图,四棱柱的底面是正方形,为和的交点,
若。
(1)求证:平面;
(2)求二面角的余弦值。
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥中,平面平面,平面平面,为上任意一点,为菱形对角线的交点。
(1)证明:平面平面;
(2)若,当四棱锥的体积被平面分成3:1两部分时,若二面角的大小为,求的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学为了更好提升学校文化品位,发挥校园文化的教育功能特举办了校园文化建设方案征集大赛,经评委会初评,有两个优秀方案入选.为了更好充分体现师生的主人翁意识,组委会邀请了100名师生代表对这两个方案进行登记评价(登记从高到低依次为),评价结果对应的人数统计如下表:
编号 | 等级 | ||||
1号方案 | 8 | 41 | 26 | 15 | 10 |
2号方案 | 7 | 33 | 20 | 20 | 20 |
(Ⅰ)若从对1号方案评价为的师生中任选3人,求这3人中至少有1人对1号方案评价为的概率;
(Ⅱ)在级以上(含级),可获得2万元的奖励,级奖励万元,级无奖励.若以此表格数据估计概率,随机请1名师生分别对两个方案进行独立评价,求两个方案获得的奖励总金额(单位:万元)的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形中,分别是的中点将分别沿折起,使重合于点.则下列结论正确的是( )
A.
B. 平面
C. 二面角的余弦值为
D. 点在平面上的投影是的外心
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)讨论函数的单调性;
(2)当m>0时,若对于区间[1,2]上的任意两个实数x1,x2,且x1<x2,都有,成立,求m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解社会对学校办学质量的满意程度,某学校决定用分层抽样的方法从高中三个年级的家长委员会中共抽取人进行问卷调查,已知高一、高二、高三、的家长委员会分别有人,人,人.
求从三个年级的家长委员会分别应抽到的家长人数;
若从抽到的人中随机抽取人进行调查结果的对比,求这人中至少有一人是高三学生家长的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】商店出售茶壶和茶杯,茶壶定价每个20元,茶杯每个5元,该商店推出两种优惠办法:(1)买一个茶壶赠一个茶杯;(2)按总价的92%付款.
某顾客需购买茶壶4个,茶杯若干个(不少于4个),若购买茶杯数x个,付款y(元),分别建立两种优惠办法中y与x之间的函数关系式,并讨论该顾客买同样多的茶杯时,两种办法哪一种更优惠。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com