【题目】设函数f(x)=|x﹣2a|,a∈R.
(1)若不等式f(x)<1的解集为{x|1<x<3},求a的值;
(2)若存在x0∈R,使f(x0)+x0<3,求a的取值范围.
【答案】
(1)解:∵函数f(x)=|x﹣2a|,a∈R,∴不等式f(x)<1 即|x﹣2a|<1,求得2a﹣1<x<2a+1.
再根据不等式f(x)<1的解集为{x|1<x<3},
可得2a﹣1=1,且2a+1=3,求得a=1
(2)解:令g(x)=f(x)+x=|x﹣2a|+x= ,故g(x)=f(x)+x的最小值为2a,
根据题意可得2a<3,a< ,故a的范围是(﹣∞, )
【解析】(1)由不等式f(x)<1求得2a﹣1<x<2a+1,再根据不等式f(x)<1的解集为{x|1<x<3},可得2a﹣1=1,且2a+1=3,求得a的值.(2)令g(x)=f(x)+x=|x﹣2a|+x= ,可得g(x)的最小值为2a,根据题意可得2a<3,由此求得a的范围.
【考点精析】通过灵活运用绝对值不等式的解法,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号即可以解答此题.
科目:高中数学 来源: 题型:
【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
频数 | 6 | 26 | 38 | 22 | 8 |
(1)作出这些数据的频率分布直方图;
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4sin(θ﹣ ).
(1)求圆C的直角坐标方程;
(2)若P(x,y)是直线l与圆面ρ≤4sin(θ﹣ )的公共点,求 x+y的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人要对C处进行考察,甲在A处,乙在B处,基地在O处,此时∠AOB=90°,测得|AC|=5 km,|BC|=km,|AO|=|BO|=2 km,如图所示,试问甲、乙两人应以什么方向走,才能使两人的行程之和最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数定义域为若在上单调递减,则称为函数的峰点, 为含峰函数.(特别地,若在上单调递增或递减,则峰点为1或0).
对于不易直接求出峰点的含峰函数,可通过做试验的方法给出的近似值,试验原理为:“对任意的若则为含峰区间,此时称为近似峰点;若则为含峰区间,此时称为近似峰点”.
我们把近似峰点与之间可能出现的最大距离称为试验的“预计误差”,记为,其值为其中表示中较大的数
(Ⅰ)若求此试验的预计误差;
(Ⅱ)如何选取才能使这个试验方案的预计误差达到最小?并证明你的结论(只证明的取值即可).
(Ⅲ)选取可以确定含峰区间为或在所得的含峰区间内选取,由与或与类似地可以进一步得到一个新的预计误差.分别求出当和时预计误差的最小值.(本问只写结果,不必证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:实数x满足(x﹣a)(x﹣3a)<0,其中a>0,命题q:实数x满足 2<x≤3.
(1)若a=1,有p且q为真,求实数x的取值范围.
(2)若p是q的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com