精英家教网 > 高中数学 > 题目详情

【题目】设抛物线的焦点为的准线与轴的交点为,点上的动点.当是等腰直角三角形时,其面积为2

1)求的方程;

2)延长AFC于点B,点MC的准线上的一点,设直线的斜率分别是,证明:

【答案】12)证明见解析

【解析】

1)根据抛物线的准线方程和焦点坐标,结合勾股定义以及三角形面积,即可求得,则抛物线方程可求;

2)设出直线方程,联立抛物线方程,得到关于的一元二次方程,将斜率之和表示出来,结合韦达定理,即可证明.

1)依题意可知,当是等腰直角三角形时:

时,根据抛物线定义,显然不成立;

时,显然也不成立.

.

∵抛物线方程为

∴焦点

的面积,解得

∴抛物线的方程为

2)证明:由(1)知

设直线的方程:代入:

,所以

,则:

,∴

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线(为参数),曲线(为参数)

1)设直线与曲线相交于两点,求劣弧的弧长;

2)若把曲线上各点的横坐标缩短为原来的,纵坐标缩短为原来的,得到曲线,设点是曲线上的一个动点,求点到直线的距离的最小值,及点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论的极值点的个数;

,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图.四棱柱的底面是直角梯形,,四边形均为正方形.

1)证明;平面平面ABCD

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线(为参数,实数),曲线(为参数,实数).在以为极点,轴的正半轴为极轴的极坐标系中,射线)与交于两点,与交于两点,当时,;当时,.

(1)求的值;

(2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】武汉又称江城,是湖北省省会城市,被誉为中部地区中心城市,它不仅有着深厚的历史积淀与丰富的民俗文化,更有着众多名胜古迹与旅游景点,每年来武汉参观旅游的人数不胜数,其中黄鹤楼与东湖被称为两张名片为合理配置旅游资源,现对已游览黄鹤楼景点的游客进行随机问卷调查,若不游玩东湖记1分,若继续游玩东湖记2分,每位游客选择是否游览东湖景点的概率均为,游客之间选择意愿相互独立.

1)从游客中随机抽取3人,记总得分为随机变量,求的分布列与数学期望;

2)(i)若从游客中随机抽取人,记总分恰为分的概率为,求数列的前10项和;

)在对所有游客进行随机问卷调查过程中,记已调查过的累计得分恰为分的概率为,探讨之间的关系,并求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

⑴当时,求函数的极值;

⑵若存在与函数的图象都相切的直线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

保费

设该险种一续保人一年内出险次数与相应概率如下:

一年内出险次数

0

1

2

3

4

概率

0.30

0.15

0.20

0.20

0.10

0.05

(1)求一续保人本年度的保费高于基本保费的概率;

(2)已知一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为

(1)当时,求函数的单调递减区间.

(2)若恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案