精英家教网 > 高中数学 > 题目详情

【题目】某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X.
(1)求该系学生甲收到李老师或张老师所发活动通知信息的概率;
(2)求使P(X=m)取得最大值的整数m.

【答案】
(1)解:因为事件A:“学生甲收到李老师所发信息”与事件B:“学生甲收到张老师所发信息”是相互独立事件,所以 相互独立,由于P(A)=P(B)= = ,故P( )=P( )=1﹣

因此学生甲收到活动信息的概率是1﹣(1﹣ 2=


(2)解:当k=n时,m只能取n,此时有P(X=m)=P(X=n)=1

当k<n时,整数m满足k≤m≤t,其中t是2k和n中的较小者,由于“李老师与张老师各自独立、随机地发送活动信息给k位”所包含的基本事件总数为( 2,当X=m时,同时收到两位老师所发信息的学生人数为2k﹣m,仅收到李老师或张老师转发信息的学生人数为m﹣k,由乘法原理知:事件{X=m}所包含的基本事件数为

P(X=m)= =

当k≤m<t时,P(X=M)<P(X=M+1)(m﹣k+1)2≤(n﹣m)(2k﹣m)m≤2k﹣

假如k≤2k﹣ <t成立,则当(k+1)2能被n+2整除时,

k≤2k﹣ <2k+1﹣ <t,故P(X=M)在m=2k﹣ 和m=2k+1﹣ 处达到最大值;

当(k+1)2不能被n+2整除时,P(X=M)在m=2k﹣[ ]处达到最大值(注:[x]表示不超过x的最大整数),

下面证明k≤2k﹣ <t

因为1≤k<n,所以2k﹣ ﹣k= = ≥0

而2k﹣ ﹣n= <0,故2k﹣ <n,显然2k﹣ <2k

因此k≤2k﹣ <t

综上得,符合条件的m=2k﹣[ ]


【解析】(1)由题设,两位老师发送信息是独立的,要计算该系学生甲收到李老师或张老师所发活动通知信息的概率可先计算其对立事件,该生没有接到任一位老师发送的信息的概率,利用概率的性质求解;(2)由题意,要先研究随机变量X的取值范围,由于k≤n故要分两类k=n与k<n进行研究,k=n时易求,k<n时,要研究出同时接受到两位老师信息的人数,然后再研究事件所包含的基本事件数,表示出P(X=m),再根据其形式研究它取得最大值的整数m即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】写出下列命题的否定,并判断其真假:

(1)任何有理数都是实数;

(2)存在一个实数,能使成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,

9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:

7527

0293

7140

9857

0347

4373

8636

6947

1417

4698

0371

6233

2616

8045

6011

3661

9597

7424

7610

4281

根据以上数据估计该射击运动员射击4次至少击中3次的概率为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆E: 的焦点在x轴上
(1)若椭圆E的焦距为1,求椭圆E的方程;
(2)设F1 , F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q,证明:当a变化时,点P在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为保障高考的公平性,高考时每个考点都要安装手机屏蔽仪,要求在考点周围1 km内不能收到手机信号,检查员抽查某市一考点,在考点正西约 km/h的的B处有一条北偏东60°方向的公路,在此处检查员用手机接通电话,以每小时12千米的速度沿公路行驶,最多需要多少时间,检查员开始收不到信号,并至少持续多长时间该考点才算合格?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,),过点的直线的参数方程为为参数).

(Ⅰ)求曲线的普通方程,并说明它表示什么曲线;

(Ⅱ)设曲线与直线分别交于两点,若成等比数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=alnx+ + x+1,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线垂直于y轴.
(1)求a的值;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个命题与正整数n有关,如果当 时命题成立,那么可推得当时命题也成立. 现已知当n=8时该命题不成立,那么可推得 ( )

A. 当n=7时该命题不成立 B. 当n=7时该命题成立

C. 当n=9时该命题不成立 D. 当n=9时该命题成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关统计知识的四个命题正确的是( )

A. 衡量两变量之间线性相关关系的相关系数越接近,说明两变量间线性关系越密切

B. 在回归分析中,可以用卡方来刻画回归的效果,越大,模型的拟合效果越差

C. 线性回归方程对应的直线至少经过其样本数据点中的一个点

D. 线性回归方程中,变量每增加一个单位时,变量平均增加个单位

查看答案和解析>>

同步练习册答案