精英家教网 > 高中数学 > 题目详情

【题目】已知在直角坐标系xOy中,圆锥曲线C的参数方程为 (θ为参数),直线l经过定点P(2,3),倾斜角为
(1)写出直线l的参数方程和圆的标准方程;
(2)设直线l与圆相交于A,B两点,求|PA|·|PB|的值

【答案】
(1)解:直线l的参数方程 ,圆的标准方程 ;
(2)解:有(1),把直线l参数方程代人圆的标准方程得, ①, 设 是方程①的两个实根,则 ,

所以


【解析】分析:本题主要考查了参数的意义,解决问题的关键是(1)圆的标准方程,两式平方相加,消去参数即可, 直线l的参数方程可直接利用 为参数,来写出;(2)设直线l与圆相交于A,B两点,求|PA|·|PB|的值,而|PA|,|PB|即为直线与圆交点的 的值,故将直线方程代入圆的方程即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:

(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50kg

箱产量≥50kg

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2+ax+b,g(x)=x2+cx+d,且f(2x+1)=4g(x),f′(x)=g′(x),f(5)=30,求a,b,c,d的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的三个内角A,B,C所对的边分别为a,b,c,向量 ,且
(1)求A的大小;
(2)现在给出下列三个条件:①a=1;② ;③B=45°,试从中选择两个条件以确定△ABC,求出所确定的△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次数学测验共有10道选择题每道题共有四个选项且其中只有一个选项是正确的评分标准规定:每选对1道题得5不选或选错得0某考试每道都选并能确定其中有6道题能选对其余4道题无法确定正确选项但这4道题中有2道能排除两个错误选项2题只能排除一个错误选项于是该生做这4道题时每道题都从不能排除的选项中随机挑选一个选项做答且各题做答互不影响

()求该考生本次测验选择题得50分的概率;

()求该考生本次测验选择题所得分数的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响。对近六年的年宣传费和年销售量的数据作了初步统计,得到如下数据:

年份

2011

2012

2013

2014

2015

2016

年宣传费(万元)

38

48

58

68

78

88

年销售量(吨)

168

188

207

224

240

255

经电脑模拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式。对上述数据作了初步处理,得到相关的值如下表:

753

246

183

1014

1)根据所给数据,求关于的回归方程;

2)规定当产品的年销售量(吨)与年宣传费(万元)的比值在区间内时认为该年效益良好。现从这6年中任选3年,记其中选到效益良好年的数量为,试求随机变量的分布列和期望。(其中为自然对数的底数,

附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线 为参数)和定点 , F1 、 F2 是此圆锥曲线的左、右焦点,以原点 O 为极点,以 x 轴的正半轴为极轴建立极坐标系.
(1)求直线 AF2 的直角坐标方程;
(2)经过点 F1 且与直线AF2 垂直的直线 l 交此圆锥曲线于M,N 两点,求||MF1|-|NF1|| 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 的参数方程是 ,直线 的参数方程为
(1)求曲线 与直线 的普通方程;
(2)若直线 与曲线 相交于 两点,且 ,求实数 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)在如图给定的直角坐标系内画出f(x)的图象;(直接画图,不需列表)

(2)写出f(x)的单调递增区间及值域.

查看答案和解析>>

同步练习册答案