精英家教网 > 高中数学 > 题目详情
13.已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log2$\frac{1}{3}$),b=f(log25),c=f(2m),则a,b,c的大小关系为(  )
A.<b<cB.a<c<bC.c<a<bD.c<b<a

分析 根据题意,由函数的奇偶性分析可得f(-x)=f(x),则有2|x-m|-1=2|-x-m|-1,解可得m的值,即可得f(x)=2|x|-1,由此计算可得a、b、c的值,比较可得答案.

解答 解:根据题意,函数f(x)=2|x-m|-1为偶函数,
即f(-x)=f(x),则有2|x-m|-1=2|-x-m|-1,
解可得:m=0,
即f(x)=2|x|-1,
所以$a=f({{{log}_2}\frac{1}{3}})={2^{|{{{log}_2}\frac{1}{3}}|}}-1={2^{{{log}_2}3}}-1=3-1=2$,
$b=f({{{log}_2}5})={2^{{{log}_2}5}}-1=4,c=f({2m})=f(0)={2^0}-1=0$,
所以c<a<b,
故选C.

点评 本题考查函数的奇偶性的应用,涉及对数的计算,关键是利用函数的奇偶性的性质求出m的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若全集U={1,2,3,4,5},M={1,4},N={2,3},则(∁UM)∩N=(  )
A.{3,5}B.{2,3,5}C.{2,5}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a∈R,若不等式lnx-$\frac{a}{x}$+x-2>0对于任意x∈(1,+∞)恒成立,则a的取值范围为(  )
A.a≤2B.a≤1C.a≤-1D.a≤0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一个棱长为2cm的正方体的顶点都在球面上,则球的体积为4$\sqrt{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线x-y=0与圆x2+y2=1的位置关系是(  )
A.相切B.相离
C.相交且直线过圆心D.相交且直线不过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F2,M(x0,y0)(x0>0,y0>0)是双曲线C上的点,N(-x0,-y0),连接MF2并延长MF2交双曲线C于点P,连接NF2,PN,若△NF2P是以∠NF2P为顶角的等腰直角三角形,则双曲线C的渐近线方程为y=±$\frac{\sqrt{6}}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.△ABC内有一点P,且P为△ABC三条中线的交点,则点P为△ABC的(  )
A.内心B.外心C.重心D.垂心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.过双曲线x2-y2=1的右焦点F作倾角为600的直线l,交双曲线于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校高二年级在一次数学测验后,随机抽取了部分学生的数学成绩组成一个样本,得到如下频率分布直方图:
(1)求这部分学生成绩的样本平均数$\overline x$和样本方差s2(同一组数据用该组的中点值作为代表)
(2)由频率分布直方图可以认为,该校高二学生在这次测验中的数学成绩X服从正态分布$N(\overline x,{s^2})$.
①利用正态分布,求P(X≥129);
②若该校高二共有1000名学生,试利用①的结果估计这次测验中,数学成绩在129分以上(含129分)的学生人数.(结果用整数表示)
附:①$\sqrt{210}$≈14.5②若X~N(μ,σ2),则P(μ-2σ<X<μ+2σ)=0.9544.

查看答案和解析>>

同步练习册答案