精英家教网 > 高中数学 > 题目详情
抛物线x2=4y的焦点为F,过点(0,-1)作直线L交抛物线A、B两点,再以AF、BF为邻边作平行四边形FARB,试求动点R的轨迹方程,并说明曲线的类型.
分析:设直线:AB:y=kx-1,A(x1,y1),B(x2,y2),R(x,y),求出F的坐标,利用AB和RF是平行四边形的对角线,对角线的中点坐标重合,直线与抛物线有两个交点,推出k的范围,整理出R的轨迹方程即可.
解答:解:设直线:AB:y=kx-1,A(x1,y1),B(x2,y2),R(x,y),由题意F(0,1).
由 y=kx-1,x2=4y,
可得x2=4kx-4.
∴x1+x2=4k.
∵AB和RF是平行四边形的对角线,
∴x1+x2=x,y1+y2=y+1.
y1+y2=k(x1+x2)-2=4k2-2,
∴x=4k y=4k2-3,消去k,可得得x2=4(y+3).
又∵直线和抛物线交于不同两点,
∴△=16k2-16>0,
|k|>1
∴|x|>4
所以x2=4(y+3),(|x|>4)
点评:本题是中档题,考查曲线轨迹方程的求法,注意挖掘题目的条件,推出直线的斜率的范围(这是容易疏忽的地方),平行四边形的对角线的交点的特征,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线有光学性质: 由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出,今有抛物线y2=2px(p>0)  一光源在点M(,4)处,由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P,折射后又射向抛物线上的点Q,再折射后,又沿平行于抛物线的轴的方向射出,途中遇到直线l: 2x-4y-17=0上的点N,再折射后又射回点M(如下图所示)

 (1)设PQ两点坐标分别为(x1,y1)、(x2,y2),证明:y1·y2=-p2

(2)求抛物线的方程;

(3)试判断在抛物线上是否存在一点,使该点与点M关于PN所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线有光学性质:由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出,今有抛物线y2=2px(p>0).一光源在点M(,4)处,由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P,折射后又射向抛物线上的点Q,再折射后,又沿平行于抛物线的轴的方向射出,途中遇到直线l:2x-4y-17=0上的点N,再折射后又射回点M(如图所示).

(1)设P、Q两点坐标分别为(x1,y1)、(x2,y2),证明y1·y2=-p2

(2)求抛物线的方程;

(3)试判断在抛物线上是否存在一点,使该点与点M关于PN所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线有光学性质:由其焦点射出的光线经抛物线折射后,沿平行于抛物线对称轴的方向射出.今有抛物线y2=2px(p>0),一光源在点M(,4)处,由其发出的光线沿平行于抛物线对称轴的方向射向抛物线上的点P,折射后又射向抛物线上的点Q,再折射后,又沿平行于抛物线对称轴的方向射出,途中遇到直线l:2x-4y-17=0上的点N,再折射后又射回点M(如图所示).

(1)设P、Q两点的坐标分别为(x1,y1),(x2,y2),证明:y1y2=-p2;

(2)求抛物线的方程;

(3)试判断在抛物线上是否存在一点,使该点与点M关于PN所在的直线对称?若存在,请求出此点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案