精英家教网 > 高中数学 > 题目详情
9.从数字1,2,3,4,5,6中任取两个数,则取出的两个数的乘积为奇数的概率为(  )
A.$\frac{1}{15}$B.$\frac{2}{15}$C.$\frac{1}{5}$D.$\frac{4}{15}$

分析 先求出基本事件总数n=${C}_{6}^{2}=15$,再取出的两个数的乘积为奇数包含的基本事件个数m=${C}_{3}^{2}$=3,由此能求出取出的两个数的乘积为奇数的概率.

解答 解:从数字1,2,3,4,5,6中任取两个数,
基本事件总数n=${C}_{6}^{2}=15$,
取出的两个数的乘积为奇数包含的基本事件个数m=${C}_{3}^{2}$=3,
∴取出的两个数的乘积为奇数的概率为p=$\frac{m}{n}=\frac{3}{15}=\frac{1}{5}$.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.函数f(x)=$\frac{lg(x+1)}{x}$的定义域为(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.记[x]表示不超过x的最大整数,如[1.2]=1,[0.5]=0,则方程[x]-x=lnx的实数根的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在${({4{x^2}-\frac{1}{x}})^6}$的展开式中,x-3的系数为-24.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AB⊥AD,AD∥BC,AD=$\frac{1}{2}$BC=2,E在BC上,且BE=$\frac{1}{2}$AB=1,侧棱PA⊥平面ABCD.
(1)求证:平面PDE⊥平面PAC;
(2)若△PAB为等腰直角三角形.
(i)求直线PE与平面PAC所成角的正弦值;
(ii)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$=(cos40°,sin40°),$\overrightarrow{b}$=(sin20°,cos20°),$\overrightarrow{u}$=$\sqrt{3}$$\overrightarrow{a}$+λ$\overrightarrow{b}$(其中λ∈R),则|$\overrightarrow{u}$|的最小值为(  )
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{3}{4}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$f(x)=sinωx+\sqrt{3}cosωx({ω>0,x∈R})$,若函数f(x)在区间(0,4π)内恰有5个零点,则ω的取值范围是$\frac{7}{6}<ω≤\frac{17}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合 A={-2,-1,0,2,3},B={y|y=x2-1,x∈A},则A∩B中元素的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.我国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器--商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为1.6寸.

查看答案和解析>>

同步练习册答案