精英家教网 > 高中数学 > 题目详情
抛物线y2=4x上一点A到点B(3,2)与焦点的距离之和最小,则点A的坐标为______.
由抛物线y2=4x可得焦点F(1,0),直线l的方程:x=-1.
如图所示,过点A作AM⊥l,垂足为M.则|AM|=|AF|.
因此当三点B,A,M共线时,|AB|+|AM|=|BM|取得最小值3-(-1)=4.
此时yA=2,代入抛物线方程可得22=4xA,解得xA=1.
∴点A(1,2).
故答案为:(1,2).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

一抛物线型拱桥,当水面离桥顶2m时,水面宽4m,若水面下降1m时,则水面宽为(  )
A.
6
m
B.2
6
m
C.4.5mD.9m

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对抛物线y2=4x,下列描述正确的是(  )
A.开口向上,焦点为(0,1)B.开口向上,焦点为(0,
1
16
)
C.开口向右,焦点为(1,0)D.开口向右,焦点为(
1
16
,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y=4x2的准线方程是(  )
A.y+1=0B.x+1=0C.16y+1=0D.16x+1=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线y2=8x的焦点为F,过F,的直线交抛物线于A(x1,y1),B(x2,y2),则y1y2=(  )
A.8B.16C.-8D.-16

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=2x的准线方程是(  )
A.y=
1
2
B.y=-
1
2
C.x=
1
2
D.x=-
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的中心在原点,离心率
3
,若它的一条准线与抛物线y2=4x的准线重合,求该双曲线与抛物线y2=4x的交点到原点的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=4px(p>0)上一点M到焦点的距离为a,则M到y轴距离为(  )
A.a-pB.a+pC.a-
p
2
D.a+2p

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线y2=2px(p>0)焦点的直线交抛物线于A、B两点,则|AB|的最小值为(  )
A.
p
2
B.pC.2pD.无法确定

查看答案和解析>>

同步练习册答案