精英家教网 > 高中数学 > 题目详情
10.已知在平面直角坐标系中有一个点列:P1(0,1),P2(x2,y2),…Pn(xn,yn)(n∈N*).若点Pn(xn,yn)到点s12的变化关系为:$\left\{{\begin{array}{l}{{x_{n+1}}={y_n}-{x_n}}\\{{y_{n+1}}={y_n}+{x_n}}\end{array}}$m<1<m+1,则|P2015P2016|=21007

分析 由题设知P1(0,1),P2(1,1),P3(0,2),P4(2,2),P5(0,4),…,寻找其规律,即可求出|P2015P2016|.

解答 解:由题设知P1(0,1),P2(1,1),P3(0,2),P4(2,2),P5(0,4),…
∴|P1P2|=1,|P2P3|=$\sqrt{2}$,|P3P4|=2,|P4P5|=$2\sqrt{2}$,…,
∴|P2015P2016|=$(\sqrt{2})$2014=21007
故答案为:21007

点评 本题考查合情推理,考查学生对新定义的理解,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.某公司收玉米x吨,小麦y吨,x,y须满足约束条件$\left\{\begin{array}{l}{5x-11y≥-22}\\{5x+3y≥9}\\{2x≤11}\end{array}\right.$,则z=10x+10y的最大值是(  )
A.85B.90C.95D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算:
(1)$\frac{lg2+lg5-lg8}{lg50-lg40}$;
(2)log3$\frac{\root{4}{27}}{3}$log5[${4}^{\frac{1}{2}{log}_{2}10}$-(${\sqrt{3}}^{3}$)${\;}^{\frac{2}{3}}$-7log72].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解方程:
(1)x3-7x+6=0
(2)x3-3x2+3x=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=ln(m•ex+ne-x)+m为偶函数,且其最小值为2+ln4,则m-n=0,{x|f(x)≤f(m+n)}={x|-4≤x≤4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若x∈(0,$\frac{π}{2}$),$y∈(0,\frac{π}{2})$,且tan2x=3tan(x-y),则x+y的可能取值是(  )
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点M(3,2)的抛物线方程是(  )
A.x2=$\frac{9}{2}$yB.y2=$\frac{4}{3}$xC.y2=$\frac{4}{3}$x或 x2=$\frac{9}{2}$yD.y2=$\frac{3}{4}$x或x2=$\frac{2}{9}$y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知F1(-2,0),F2(2.0),点P满足|PF1|-|PF2|=2,记点P的轨迹为E.
(1)求轨迹E的方程;
(2)点M,N是曲线E上的两个动点,且以线段MN为直径的圆恒经过点Q(-1.0),求证:直线MN过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知0<α<π,sinα+cosα=-$\frac{7}{13}$,则$\frac{sinαcosα}{\sqrt{2}sin(α-\frac{π}{4})}$的值为(  )
A.-$\frac{60}{221}$B.-$\frac{120}{221}$C.-$\frac{60}{17}$D.$\frac{60}{221}$

查看答案和解析>>

同步练习册答案