精英家教网 > 高中数学 > 题目详情

【题目】如图,边长为的正方形ADEF与梯形ABCD所在的平面互相垂直,其中ABCDABBCDC=BC=AB=1,点M在线段EC上.

)证明:平面BDM平面ADEF;

)判断点M的位置,使得三棱锥B﹣CDM的体积为

【答案】见解析;)点M在线段CE的三等分点且靠近C处.

【解析】试题分析:

由题意结合勾股定理可得ADBD由面面垂直的性质可得BDED据此可得BD⊥平面ADEF故平面BDM⊥平面ADEF

Ⅱ)在平面DMC内,过MMNDC,垂足为N转换顶点,VBCDM=VMCDB,据此可得,利用相似三角形的性质可得,即点M在线段CE的三等分点且靠近C处.

试题解析:

DC=BC=1DCBC

BD=

AD=AB=2

AD2+BD2=AB2

∴∠ADB=90°

ADBD

∵平面ADEF⊥平面ABCDEDAD,平面ADEF平面ABCD=AD

ED⊥平面ABCD

BDED

ADDE=D

BD⊥平面ADEF

BD平面BDM

∴平面BDM⊥平面ADEF

Ⅱ)如图,在平面DMC内,过MMNDC,垂足为N,则MNED

ED⊥平面ABCD

MN⊥平面ABCD

VBCDM=VMCDB=

××1×1×MN=

MN=

=

CM=CE

∴点M在线段CE的三等分点且靠近C处.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校夏令营有3名男同学和3名女同学,其年级情况如下表,现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).

一年级

二年级

三年级

男同学

女同学

(1)用表中字母列举出所有可能的结果;

(2)设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地小吃“全羊汤”2008年被中国中医学会营养膳食协会评为“中华名吃”,2010年12月被纳入市级非物质文化遗产名录,打造地方名片.当初向各地作广告推广,对销售收益产生额积极的影响.某年度在若干地区各投入4万元广告费用后,将各地该年度的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

(1)根据频率分布直方图,计算图中各小长方形的宽度;

(2)根据频率分布直方图,估计投入4万元广告费用之后,销售收益的平均值;(以各组区间中点值代表改组的取值)

(3)又在某一地区测的另外一些数据,并整理的得到下表:

广告投入(单位:万元)

1

2

3

4

5

销售收益(单位:百万元)

2

3

2

7

请将(2)的结果填入空白栏,表中的数据之间存在线性相关关系.计算,并预测年度广告约投入多少万元时,年销售收益达到千万元?(结果精确达到0.1)

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是直角梯形,平面,

(1)求直线与平面所成角的余弦;

(2)求平面和平面所成角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小萌大学毕业后,家里给了她10万元,她想办一个“萌萌”加工厂,根据市场调研,她得出了一组毛利润(单位:万元)与投入成本(单位:万元)的数据如下:

投入成本

0.5

1

2

3

4

5

6

毛利润

1.06

1.25

2

3.25

5

7.25

9.98

为了预测不同投入成本情况下的利润,她想在两个模型中选一个进行预测.

(1)根据投入成本2万元和4万元的两组数据分别求出两个模型的函数解析式,请你根据给定数据选出一个较好的函数模型进行预测(不必说明理由),并预测她投入8万元时的毛利润;

(2)若小萌准备最少投入2万元开办加工厂,请预测加工厂毛利润率的最大值并说明理由.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“海之旅”表演队在一海滨区域进行集训,该海滨区域的海浪高度(米)随着时刻而周期性变化.为了了解变化规律,该团队观察若干天后,得到每天各时刻的浪高数据的平均值如下表:

0

3

6

9

12

15

18

21

24

1.0

1.4

1.0

0.6

1.0

1.4

0.9

0.6

1.0

(1)从中选择一个合适的函数模型,并求出函数解析式;

(2)如果确定当浪高不低于0.8米时才进行训练,试安排白天内恰当的训练时间段.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线y2=2px(p>0)焦点F的直线与抛物线交于A,B两点,作AC,BD垂直抛物线的准线l于C,D,其中O为坐标原点,则下列结论正确的是 . (填序号)

②存在λ∈R,使得 成立;
=0;
④准线l上任意一点M,都使得 >0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣mx(m∈R).
(1)当m=0时,求函数f(x)的零点个数;
(2)当m≥0时,求证:函数f(x)有且只有一个极值点;
(3)当b>a>0时,总有 >1成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果函数在定义域内给定区间上存在,满足 ,则称函数上的“平均值函数”,是它的均值点.

(1)是否是上的“平均值函数”,如果是请找出它的均值点;如果不是,请说明理由;

(2)现有函数上的平均值函数,则求实数的取值范围.

查看答案和解析>>

同步练习册答案