精英家教网 > 高中数学 > 题目详情
如图:已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,过顶点A1作底面ABC的垂线,若垂足为BC的中点,则异面直线AB与CC1成的角的余弦值为
3
4
3
4
分析:确定∠A1AB即为异面直线AB与CC1所成的角,再在△∠A1AB中,利用余弦定理即可求解.
解答:解:设BC的中点为D,连接A1D、AD、A1B,则
∵AA1∥CC1,∴∠A1AB即为异面直线AB与CC1所成的角.
设三棱柱ABC-A1B1C1的侧棱与底面边长为1,则|AD|=
3
2
,|A1D|=
1
2
,|A1B|=
2
2

由余弦定理,得cos∠A1AB=
1+1-
1
2
2
=
3
4

故答案为:
3
4
点评:本题考查线线角,考查余弦定理的运用,解题的关键是确定线线角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC=BC=2,AA1=4,AB=2
2
,M,N分别是棱CC1,AB中点.
(Ⅰ)求证:CN⊥平面ABB1A1
(Ⅱ)求证:CN∥平面AMB1
(Ⅲ)求三棱锥B1-AMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中点,N是BC的中点,点P在直线A1B1上,且满足
A1P
A1B1

(1)证明:PN⊥AM;
(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该角最大值的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分别是CC1,BC的中点,点P在直线A1B1上,且
A1P
A1B1

(Ⅰ)证明:无论λ取何值,总有AM⊥PN;
(Ⅱ)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该角取最大值时的正切值;
(Ⅲ)是否存在点P,使得平面PMN与平面ABC所成的二面角为30°,若存在,试确定点P的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱柱ABC-A1B1C1的所有棱长均为2,且A1A⊥底面ABC,D为AB的中点,G为△ABC1的重心,则|
CG
|的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC,∠ABC=90°,D为AC中点.
(1)求证:BD⊥AC1
(2)若AB=
2
,AA1=2
3
,求AC1与平面ABC所成的角.

查看答案和解析>>

同步练习册答案