精英家教网 > 高中数学 > 题目详情
7.如图,在空间几何体A-BCDE中,底面BCDE是梯形,且CD∥BE,CD=2BE=4,∠CDE=60°,△ADE是边长为2的等边三角形,F为AC的中点.AC=4
(Ⅰ)求证:平面ADE⊥平面BCDE;
(Ⅱ)求几何体C-BDF的体积.

分析 (1)取DE的中点H,连AH,CH,推导出AH⊥DE,AH⊥HC,由此能证明平面ADE⊥BCDE.
(2)几何体C-BDF的体积${V_{C-BDF}}={V_{F-BDC}}=\frac{1}{2}{V_{A-BDC}}$,由此能求出结果.

解答 证明:(1)取DE的中点H,连AH,CH,
∵△ADE为等边三角形,∴AH⊥DE,且$AH=\sqrt{3}$,
在△DHC中,DH=1,DC=4,HDC=60°,
∴$HC=\sqrt{13}$,∴AC2=AH2+HC2,即AH⊥HC,
∵DE∩HC=H,∴AH⊥平面BCDE,∵AH?平面ADE,
∴平面ADE⊥BCDE…(6分)
$(2){V_{A-BCD}}=\frac{1}{3}{S_{△BCD}}•AH$=$\frac{1}{3}×\frac{{4\sqrt{3}}}{2}×\sqrt{3}$=2,
∵F是AC中点,
∴几何体C-BDF的体积${V_{C-BDF}}={V_{F-BDC}}=\frac{1}{2}{V_{A-BDC}}=1$…(12分)

点评 本题考查面面垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设全集I={0,2,4,6,8,10},集合M={4,8},则∁IM=(  )
A.{4,8}B.{0,2,4,10}C.{0,2,10}D.{0,2,6,10}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.分别求出下列曲线的方程:
(1)椭圆的两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P到两焦点的距离之和等于10,求椭圆的标准方程.
(2)双曲线C经过点(2,2),且与$\frac{{y}^{2}}{4}$-x2=1具有相同的渐近线,求双曲线C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)在△ABC中,a=3,c=2,B=60°求b
(2)在△ABC中,A=60°,B=45°,a=2 求c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点M(2,1)的直线l与x轴、y轴分别交于P、Q两点,O为原点,且S△OPQ=4,则符合条件的直线l有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列$\sqrt{3},3,\sqrt{15},…,\sqrt{3(2n-1)},…$,那么9是此数列的第(  )项.
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a1=3,an=2an-1+(t+1)•2n+3m+t(t,m∈R,n≥2,n∈N*
(1)t=0,m=0时,求证:$\{\frac{a_n}{2^n}\}$是等差数列;
(2)t=-1,m=$\frac{4}{3}时,求证:\{{a_n}+3\}$是等比数列;
(3)t=0,m=1时,求数列{an}的通项公式和前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求下列不等式的解集.
(1)$\frac{2x}{x+1}<1$         
(2)x2+(2-a)x-2a≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C过点Q(-3,2)且与椭圆D:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1有相同焦点
(1)求椭圆C的方程;
(2)已知椭圆C的焦点为F1、F2,P为椭圆上一点∠F1PF2=60°,求△PF1F2的面积.

查看答案和解析>>

同步练习册答案