精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的内角ABC的对边分别为abc.且满足4cos2cos2B+C.

1)求角A

2)若△ABC的面积为,周长为8,求a.

【答案】1 ;(2.

【解析】

1)利用二倍角公式化简等式可得关于cosA的复合型二次方程,求出cosA再根据角A的范围即可确定角A;(2)利用三角形面积公式求出bc,再利用余弦定理及周长可求得关于a的一元二次方程,求解即可.

1)∵A+B+Cπ

4cos2cos2B+C)=21+cosAcos2A2cos2A+2cosA+3

2cos2A2cosA0,解得cosA(舍去),

0Aπ,∴A.

2)∵bcsinAbc4

由余弦定理可得

又∵a+b+c8,∴a2=(8a24,解得a.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等比数列满足,数列满足.

(1)求数列 的通项公式;

(2)令,求数列的前项和

(3)若,求对所有的正整数都有成立的的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,曲线C的参数方程为 (θ为参数),直线l经过定点P(3,5),倾斜角为.

(1)写出直线l的参数方程和曲线C的标准方程.

(2)设直线l与曲线C相交于A,B两点,求|PA|·|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:

支持

保留

不支持

岁以下

岁以上(含岁)

(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;

(2)在持“不支持”态度的人中,用分层抽样的方法抽取人看成一个总体,从这人中任意选取人,求至少有一人年龄在岁以下的概率.

(3)在接受调查的人中,有人给这项活动打出的分数如下: ,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数若满足: ,且,则称函数为“指向的完美对称函数”.已知是“1指向2的完美对称函数”,且当时, .若函数在区间上恰有5个零点,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】M是正方体的棱的中点,给出下列四个命题:①过M点有且只有一条直线与直线都相交;②过M点有且只有一条直线与直线都垂直;③过M点有且只有一个平面与直线都相交;④过M点有且只有一个平面与直线都平行;其中真命题是(

A.②③④B.①③④C.①②④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)如果曲线在点处的切线的斜率是,求的值;

)当时,求证:

)若存在单调递增区间,请直接写出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,圆的极坐标方程为.

(1)求圆的直角坐标方程,并写出圆心和半径;

(2)若直线与圆交于两点,求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是( )

A.若两条直线互相平行,那么它们的斜率相等

B.方程能表示平面内的任何直线

C.的圆心为,半径为

D.若直线不经过第二象限,则t的取值范围是

查看答案和解析>>

同步练习册答案