精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|lgx|,则f(
1
4
)、f(
1
3
)、f(2)从大到小用>号相连是
 
分析:先根据函数f(x)的解析式,将x=
1
4
1
3
分别代入求出f(
1
4
)、f(
1
3
)对应的函数值,再结合y=lgx的单调性可判断出三个函数值的大小.
解答:解:∵f(x)=|lgx|∴f(
1
4
)=|lg
1
4
|=|-lg4|=lg4
f(
1
3
)=|lg
1
3
|=|-lg3|=lg3
∵函数y=lgx是单调递增的函数
∴lg4>lg3>lg2
∴f(
1
4
)>f(
1
3
)>f(2)
故答案为:f(
1
4
)>f(
1
3
)>f(2)
点评:本题主要考查对数函数的运算法则和对数函数的单调性,即底数大于1时单调递增,底数大于0小于1时单调递减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案