精英家教网 > 高中数学 > 题目详情
19.求证:当x≥0时,$\frac{1}{{e}^{x}}+\frac{4x}{x+4}≥1$.

分析 令f(x)=$\frac{1}{{e}^{x}}$+$\frac{4x}{x+4}$,从而求导f′(x)=$\frac{16{e}^{x}-(x+4)^{2}}{{e}^{x}(x+4)^{2}}$,再令g(x)=16ex-(x+4)2,从而求导g′(x)=16ex-2(x+4),二阶求导g″(x)=16ex-2,从而判断导数的正负以确定函数的单调性,从而证明.

解答 证明:令f(x)=$\frac{1}{{e}^{x}}$+$\frac{4x}{x+4}$,
f′(x)=-$\frac{1}{{e}^{x}}$+$\frac{16}{(x+4)^{2}}$=$\frac{16{e}^{x}-(x+4)^{2}}{{e}^{x}(x+4)^{2}}$,
令g(x)=16ex-(x+4)2
则g′(x)=16ex-2(x+4),
g″(x)=16ex-2,
∵x≥0,∴g″(x)=16ex-2>0,
故g′(x)在[0,+∞)上是增函数,
且g′(0)=16-8=8>0,
故g(x)在[0,+∞)上是增函数,
且g(0)=16-16=0,
故g(x)≥0在[0,+∞)上恒成立,
故f′(x)≥0在[0,+∞)上恒成立,
故f(x)在[0,+∞)上是增函数,
故f(x)≥f(0)=1+0=1,
即当x≥0时,$\frac{1}{{e}^{x}}+\frac{4x}{x+4}≥1$.

点评 本题考查了导数的综合应用及利用函数的思想证明不等式的应用,注意对函数的连续求导的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域为[$\frac{a}{2}$,$\frac{b}{2}$],则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则t的范围为(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≤0}\\{x≥1}\\{x+y-7≤0}\end{array}\right.$,则$\frac{y+x}{x}$的取值范围是(  )
A.[$\frac{14}{5}$,7]B.(-∞,$\frac{14}{5}$]∪[7,+∞)C.(-∞,4]∪[7,+∞)D.(4,7]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设f(x)是定义在R上的函数,若对任意的实数x,都有f(x+4)≤f(x)+4和f(x+2)≥f(x)+2且f(-1)=0,则f(2015)的值是(  )
A.2014B.2015C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某几何体的展开图如图所示(其中△VAB,△V1AC,△V2BC,△ABC都是边长为2的等边三角形).将它沿AB、BC、AC折叠还原为原几何体,使得V、V1、V2重合于点V.
(1)求原几何体的表面积;
(2)若M为AB中点,求在原几何体中直线VM与直线BC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知直线y=x+1与曲线y=1nx+a相切,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设集合A={x|x2-x+m=0},B={x|x2+px+q=0},且A∩B={1},A∪B=A.
(1)求实数m的值;
(2)求实数p,q的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)满足f(0)=0,且f(x+1)-f(x)=-2x+1.
(1)求二次函数f(x)的解析式;
(2)若不等式mf(x)>(m-1)(2x-1)对m∈[-2,2]恒成立,求实数x的取值范围;
(3)是否存在这样的正数a、b,当x∈[a,b]时,f(x)的值域为$[\frac{1}{b},\frac{1}{a}]$,若存在,求出所有的正数a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果用反证法证明“数列{an}的各项均小于2”,有下列四种不同的假设:
①数列{an}的各项均大于2;          ②数列{an}的各项均大于或等于2;
③数列{an}中存在一项ak,ak≥2;   ④数列{an}中存在一项ak,ak>2.
其中正确的序号为③.(填写出所有假设正确的序号)

查看答案和解析>>

同步练习册答案