【题目】函数,则关于x的方程的实数解最多有( )
A.7个B.10个C.12个D.15个
【答案】C
【解析】
判断的单调性,作出的大致函数图象,求出的解,再根据的图象得出的解得个数即可得出结论.
当时,
∴在上单调递减,在上单调递增.
∴当时,取得极小值.
当时,由二次函数性质可知在上单调递减,在上单调递增,
∴当时,取得极小值.
当时,则有4个解,不妨设从小到大依次为,
则,,.
再令,作出的函数图象如图所示:
,则,(=1,2,3,4).
由图象可知有2解,有3解,有4解,有3解,
此时有12解.
当时,则有4个解,
则有3解,至多3解,至多1解,至多4解.
此时方程至多11解.
当时,则有2个解,,
由上可知无实数根,有1解,所以有1解.
当时,则有3个解,,
由上可知无实数根,有1解, 有4解.
所以此时有5解.
综上所述:至多12解.
故选:C.
科目:高中数学 来源: 题型:
【题目】设min{m,n}表示m,n二者中较小的一个,已知函数f(x)=x2+8x+14,g(x)=(x>0),若x1∈[-5,a](a≥-4),x2∈(0,+∞),使得f(x1)=g(x2)成立,则a的最大值为
A.-4B.-3C.-2D.0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆过以下4个不同的点:.
(1)求圆的标准方程;
(2)先将圆向左平移个单位后,再将所有点的横坐标、纵坐标都伸长到原来的倍得到圆,若两个点分别在直线和上,为圆上任意一点,且(为常数),证明直线过圆的圆心,并求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:过点和点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆相交于不同的两点, ,是否存在实数,使得?若存在,求出实数;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为(为参数),直线l的参数方程为(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,射线m:.
(1)求C和l的极坐标方程;
(2)设m与C和l分别交于异于原点的A,B两点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为提高产品质量,某企业质量管理部门经常不定期地抽查产品进行检测,现在某条生产线上随机抽取100个产品进行相关数据的对比,并对每个产品进行综合评分(满分100分),将每个产品所得的综合评分制成如图所示的频率分布直方图.记综合评分为80分及以上的产品为一等品.
(1)求图中的值,并求综合评分的中位数;
(2)用样本估计总体,以频率作为概率,按分层抽样的思想,先在该条生产线中随机抽取5个产品,再从这5个产品中随机抽取2个产品记录有关数据,求这2个产品中恰有一个一等品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】谢宾斯基三角形是一种分形,由波兰数学家谢宾斯基在1915年提出,先作一个正三角形.挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角形中又挖去一个“中心三角形”,我们用白色代表挖去的面积,那么黑三角形为剩下的面积(我们称黑三角形为谢宾斯基三角形).向图中第5个大正三角形中随机撒512粒大小均匀的细小颗粒物,则落在白色区域的细小颗粒物的数量约是( )
A.256B.350C.162D.96
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com