精英家教网 > 高中数学 > 题目详情

如图,已知为平行四边形,,点上,相交于.现将四边形沿折起,使点在平面上的射影恰在直线上.

(Ⅰ) 求证:平面

(Ⅱ) 求折后直线与平面所成角的余弦值.

 

【答案】

(1)要证明线面垂直,只要通过线线垂直来判定线面垂直即可。

(2)

【解析】

试题分析:解:(Ⅰ)∵EF⊥DN,EF⊥BN,DN∩BN=N

∴EF⊥面DNB ∵EF?平面BCEF,∴平面BDN⊥平面BCEF,∵BN=平面BDN∩平面BCEF,∴D在平面BCEF上的射影在直线BN上,∵D在平面BCEF上的射影在直线BC上,∴D在平面BCEF上的射影即为点B,∴BD⊥平面BCEF.   6分

(Ⅱ)连接BE,由BD⊥平面BCEF,得∠DEB即为直线DE与平面BCEF所成角.在原图中,由已知,可得AD=3,BD=3,BN=,DN=2,DE=4 折后,由BD⊥平面BCEF,知BD⊥BN则BD2=DN2-BN2=9,即BD=3则在Rt△DEB中,有BD=3,DE=4,则BE=,故cos∠DEB= 即折后直线DE与平面BCEF所成角的余弦值为  14分

考点:线面垂直,线面角

点评:主要是考查了空间几何体中线面垂直的证明以及线面角的求解的综合运用,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:044

如图已知空间四边ABCDEH分别为ABAD的中点,FGBCCD的中点,(1)求证:四边形EFGH为平行四边形;(2)若EFGH为菱形,求ACBD之间的大小关系.

 

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

如图已知空间四边ABCDEH分别为ABAD的中点,FGBCCD的中点,(1)求证:四边形EFGH为平行四边形;(2)若EFGH为菱形,求ACBD之间的大小关系.

 

查看答案和解析>>

同步练习册答案