【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,∠DAB=60°.
(1)求证:直线AM∥平面PNC;
(2)求二面角D﹣PC﹣N的余弦值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|3x-1|-2|x|+2.
(Ⅰ)解不等式:f(x)<10;
(Ⅱ)若对任意的实数x,f(x)-|x|≤a恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(导学号:05856290)[选修4-5:不等式选讲]
已知函数f(x)=|x-a|+|x-2a|.
(Ⅰ)对任意x∈R,不等式f(x)>1成立,求实数a的取值范围;
(Ⅱ)当a=-1时,解不等式f(x)<3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=emx+x2-mx.
(1)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增;
(2)若对于任意x1,x2∈[-1,1],都有,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品按质量标准分为,,,,五个等级.现从一批该产品随机抽取20个,对其等级进行统计分析,得到频率分布表如下:
等级 | |||||
频率 |
(1)在抽取的20个产品中,等级为5的恰有2个,求,;
(2)在(1)的条件下,从等级为3和5的所有产品中,任意抽取2个,求抽取的2个产品等级恰好相同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(导学号:05856301)已知函数f(x)=m(x-1)ex+x2(m∈R),其导函数为f′(x),若对任意的x<0,不等式x2+(m+1)x>f′(x)恒成立,则实数m的取值范围为( )
A. (0,1) B. (-∞,1) C. (-∞,1] D. (1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正方体ABCD-A′B′C′D′的外接球的体积为π,将正方体割去部分后,剩余几何体的三视图如图所示,则剩余几何体的表面积为( )
A. + B. 3+或+ C. 3+ D. +或2+
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com