精英家教网 > 高中数学 > 题目详情
设函数f(x)是定义在区间(-∞,+∞)上以2为周期的函数,记Ik=(2k-1,2k+1](k∈Z).已知x∈I°时,f(x)=x2,如图.
(1)求函数f(x)的解析式;
(2)对于k∈N*,求集合Mk={a|使方程f(x)=ax在Ik上有两个不相等的实数根}.
分析:(1)利用函数的周期性求函数的表达式.(2)将方程f(x)=ax转化为二次函数,利用二次函数根的分布求a的取值集合.
解答:解:(1)因为f(x)是定义在区间(-∞,+∞)上以2为周期的函数,所以f(x)=f(x-2k),
当x∈Ik 时,(x-2k)∈I0,所以f(x)=f(x-2k)=(x-2k)2
所以函数f(x)的解析式为f(x)=f(x-2k)=(x-2k)2,x∈Ik
(2)当k∈N*,且x∈Ik 时,方程f(x)=ax化简为x2-(4k+a)x+k2=0,
设g(x)=x2-(4k+a)x+k2,使方程f(x)=ax在Ik上有两个不相等的实数根,
△=a(a+8k)>0
2k-1<
4k+a
2
≤2k+1
g(2k-1)=1-2ak+a>0
g(2k+1)=1-2ak-a≥0
,即
a>0??或a<-8k
-1<a≤1
0<a<
1
2k-1
0<a≤
1
2k+1
,解得0<a≤
1
2k+1

所以Mk={a|0<a≤
1
2k+1
}.
点评:本题主要考查函数周期性的应用,以及二次方程根的分布问题,考查学生的转化能力,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)是定义在(-∞,+∞)上的增函数,如果不等式f(1-ax-x2)<f(2-a)对于任意x∈[0,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)求f(
1
9
)

(2)若f(x)+f(2-x)<2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[-1,0)∪(0,1]上的偶函数,当x∈[-1,0)时,f(x)=x3-ax(a∈R).
(1)当x∈(0,1]时,求f(x)的解析式;
(2)若a>3,试判断f(x)在(0,1]上的单调性,并证明你的结论;
(3)是否存在a,使得当x∈(0,1]时,f(x)有最大值1?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在[a,b]上的奇函数,则f(a+b)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数.若当x≥0时,f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)请你作出函数f(x)的大致图象.
(3)当0<a<b时,若f(a)=f(b),求ab的取值范围.
(4)若关于x的方程f2(x)+bf(x)+c=0有7个不同实数解,求b,c满足的条件.

查看答案和解析>>

同步练习册答案