【题目】已知函数.
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)求证:直线是曲线的切线;
(Ⅲ)写出的一个值,使得函数有三个不同零点(只需直接写出数值)
科目:高中数学 来源: 题型:
【题目】如图,已知圆锥的顶点为P,母线长为4,底面圆心为O,半径为2.
(1)求这个圆锥的体积;
(2)设OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,求异面直线PM与OB所成角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知.
(Ⅰ)若函数在上单调递增,求实数的取值范围;
(Ⅱ)若函数在区间上的最大值为,最小值为,令,求的解析式及其最小值(注:为自然对数的底数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到辆/千米时,造成堵塞,此时车流速度为;当车流密度不超过辆/千米时,车流速度为千米/小时,研究表明:当时,车流速度是车流密度的一次函数.
(1)当时,求函数的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·石家庄一模)祖暅是南北朝时期的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )
A. ①② B. ①③
C. ②④ D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从含有两件正品a1,a2和一件次品b1的3件产品中每次任取1件,
每次取出后不放回,连续取两次.
(1)求取出的两件产品中恰有一件次品的概率;
(2)如果将“每次取出后不放回”这一条件换成“每次取出后放回”,则取出的两件产品中恰有一件次品的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在四棱锥中,,,E为PC的中点,,
(1)求证:
(2)若与面ABCD所成角为,P在面ABCD射影为O,问是否在BC上存在一点F,使面与面PAB所成的角为,若存在,试求点F的位置,不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com