精英家教网 > 高中数学 > 题目详情
12.定义在R上的偶函数f(x)满足:对于任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,则当n∈N*时,有(  )
A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)

分析 根据函数奇偶性和单调性的性质进行转化求解即可.

解答 解:∵对于任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,
∴函数f(x)在(-∞,0]上为增函数,
∵函数f(x)是偶函数,
∴函数f(x)在[0,+∞)上是减函数,
∵当n∈N*时,n+1>n>n-1≥0,
∴f(n+1)<f(n)<f(n-1),
即f(n+1)<f(-n)<f(n-1),
故选:C

点评 本题主要考查函数值的大小比较,根据条件判断函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设a,b∈R,集合A={1,a+b,a},B={0,$\frac{b}{a}$,b},若A=B,则b-a(  )
A.2B.-1C.1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数f(x)满足f(0)=1,f(x+1)-f(x)=2x.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(2x)在区间[-1,1]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.
(Ⅰ)证明:A1D⊥平面A1BC;
(Ⅱ)求四棱锥A1-BB1C1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设G是△ABC的重心,且$\sqrt{7}\overrightarrow{GA}sinA+3\overrightarrow{GB}sinB+3\sqrt{7}\overrightarrow{GC}sinC=\overrightarrow 0$,则角B的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知直线经过点P(1,2),且与直线y=2x+3平行,则该直线方程为y=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{m}{x}$+$\frac{1}{2}$lnx-1(m∈R)的两个零点为x1,x2(x1<x2).
(1)求实数m的取值范围;
(2)求证:$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$>$\frac{2}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若变量x、y满足$\left\{\begin{array}{l}{x+y≤-1}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,则x2+y2的最小值是(  )
A.$\frac{\sqrt{2}}{2}$B.1C.3D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案