精英家教网 > 高中数学 > 题目详情

【题目】已知,直线相交于点,且它们的斜率之积是.

1)求点的轨迹的方程;

2)过点的直线与轨迹交于点,与交于点,过的垂直线交轴于点,求证:.

【答案】1;(2)证明见解析.

【解析】

(1) 直接法求轨迹方程,利用 化简可得.

(2) 设直线的方程为与椭圆方程联解,求出点坐标,再利用垂直关系求出点坐标,计算得可证.

1)设,则直线的斜率.直线的斜率

依题意得,整理得

所以点的轨迹的方程为.

2)解法1:设直线的方程为

联立,消去整理得

,所以,即

易得,直线的斜率

,所以直线的方程为

,所以直线的斜率

又直线的斜率为,所以,所以.

解法2:设(其中),则直线

所以直线的斜率.

,所以直线的方程为

所以直线的斜率,直线的斜率

,即,所以.

解法3:设直线,则直线的斜率

,直线的斜率

,所以直线的方程为.

所以直线的斜率,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】十九世纪末,法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”贝特朗用“随机半径”、“随机端点”、“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设A为圆O上一个定点,在圆周上随机取一点B,连接AB,所得弦长AB大于圆O的内接等边三角形边长的概率.则由“随机端点”求法所求得的概率为(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】疫情期间,某小区超市平面图如图所示,由矩形与扇形组成,米,米,,经营者决定在点处安装一个监控摄像头,摄像头的监控视角,摄像头监控区域为图中阴影部分,要求点在弧上,点在线段上.设.

1)求该监控摄像头所能监控到的区域面积关于的函数关系式,并求出的取值范围;

2)求监控区域面积最大时,角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四人进行一项益智游戏,方法如下:第一步:先由四人看着平面直角坐标系中方格内的16个棋子(如图所示),甲从中记下某个棋子的坐标;第二步:甲分别告诉其他三人:告诉乙棋子的横坐标.告诉丙棋子的纵坐标,告诉丁棋子的横坐标与纵坐标相等;第三步:由乙、丙、丁依次回答.对话如下:“乙先说我无法确定.丙接着说我也无法确定.最后丁说我知道”.则甲记下的棋子的坐标为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017727日上映以来,《战狼2》的票房一路高歌猛进,并不断刷新华语电影票房纪录.825日官方宣布冲破53亿票房之后,根据外媒Worldwide Box Office给出的2017年周末全球票房最新排名,《战狼2》以8.151亿美元(约54.18亿元)的成绩成功杀入前五.通过收集并整理了《战狼2》上映前两周的票房(单位:亿元)数据,绘制出下面的条形图.根据该条形图,下列结论错误的是(

A.在《战狼2》上映前两周中,前四天票房逐日递增

B.在《战狼2》上映前两周中,日票房超过2亿元的共有12

C.在《战狼2》上映前两周中,85日,86日达到了票房的高峰期

D.在《战狼2》上映前两周中,前五日的票房平均数高于后五日的票房平均数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,底面是边长为4的正三角形,底面,点分别为的中点.

(1)求证:平面平面

(2)在线段上是否存在点,使得直线与平面所成的角的正弦值为?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】a是实数,关于z的方程(z22z+5)(z2+2az+1)=04个互不相等的根,它们在复平面上对应的4个点共圆,则实数a的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为,直线与椭圆相交于两点;当直线经过椭圆的下顶点和右焦点时,的周长为,且与椭圆的另一个交点的横坐标为

1)求椭圆的方程;

2)点内一点,为坐标原点,满足,若点恰好在圆上,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,圆心为坐标原点的单位圆OC的内部,且与C有且仅有两个公共点,直线C只有一个公共点.

1)求C的标准方程;

2)设不垂直于坐标轴的动直线l过椭圆C的左焦点F,直线lC交于AB两点,且弦AB的中垂线交x轴于点P,试求的面积的最大值.

查看答案和解析>>

同步练习册答案