【题目】已知,,直线,相交于点,且它们的斜率之积是.
(1)求点的轨迹的方程;
(2)过点的直线与轨迹交于点,与交于点,过作的垂直线交轴于点,求证:.
【答案】(1);(2)证明见解析.
【解析】
(1) 直接法求轨迹方程,利用 化简可得.
(2) 设直线的方程为与椭圆方程联解,求出、点坐标,再利用垂直关系求出点坐标,计算得可证.
(1)设,则直线的斜率.直线的斜率,
依题意得,整理得,
所以点的轨迹的方程为.
(2)解法1:设直线的方程为,
联立,消去整理得,
又,所以,即,,
易得,直线的斜率,
又,所以直线的方程为,
令得,所以直线的斜率,
又直线的斜率为,所以,所以.
解法2:设(其中),则直线,
令得,
所以直线的斜率.
又,所以直线的方程为,
所以直线的斜率,直线的斜率,
又,即,所以.
解法3:设直线,则直线的斜率,
,直线的斜率,
又,所以直线的方程为.
令得,
所以直线的斜率,所以
科目:高中数学 来源: 题型:
【题目】十九世纪末,法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”贝特朗用“随机半径”、“随机端点”、“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设A为圆O上一个定点,在圆周上随机取一点B,连接AB,所得弦长AB大于圆O的内接等边三角形边长的概率.则由“随机端点”求法所求得的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】疫情期间,某小区超市平面图如图所示,由矩形与扇形组成,米,米,,经营者决定在点处安装一个监控摄像头,摄像头的监控视角,摄像头监控区域为图中阴影部分,要求点在弧上,点在线段上.设.
(1)求该监控摄像头所能监控到的区域面积关于的函数关系式,并求出的取值范围;
(2)求监控区域面积最大时,角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四人进行一项益智游戏,方法如下:第一步:先由四人看着平面直角坐标系中方格内的16个棋子(如图所示),甲从中记下某个棋子的坐标;第二步:甲分别告诉其他三人:告诉乙棋子的横坐标.告诉丙棋子的纵坐标,告诉丁棋子的横坐标与纵坐标相等;第三步:由乙、丙、丁依次回答.对话如下:“乙先说我无法确定.丙接着说我也无法确定.最后丁说我知道”.则甲记下的棋子的坐标为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自2017年7月27日上映以来,《战狼2》的票房一路高歌猛进,并不断刷新华语电影票房纪录.继8月25日官方宣布冲破53亿票房之后,根据外媒Worldwide Box Office给出的2017年周末全球票房最新排名,《战狼2》以8.151亿美元(约54.18亿元)的成绩成功杀入前五.通过收集并整理了《战狼2》上映前两周的票房(单位:亿元)数据,绘制出下面的条形图.根据该条形图,下列结论错误的是( )
A.在《战狼2》上映前两周中,前四天票房逐日递增
B.在《战狼2》上映前两周中,日票房超过2亿元的共有12天
C.在《战狼2》上映前两周中,8月5日,8月6日达到了票房的高峰期
D.在《战狼2》上映前两周中,前五日的票房平均数高于后五日的票房平均数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,底面是边长为4的正三角形,,底面,点分别为,的中点.
(1)求证:平面平面;
(2)在线段上是否存在点,使得直线与平面所成的角的正弦值为?若存在,确定点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a是实数,关于z的方程(z2-2z+5)(z2+2az+1)=0有4个互不相等的根,它们在复平面上对应的4个点共圆,则实数a的取值范围是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左,右焦点分别为,直线与椭圆相交于两点;当直线经过椭圆的下顶点和右焦点时,的周长为,且与椭圆的另一个交点的横坐标为
(1)求椭圆的方程;
(2)点为内一点,为坐标原点,满足,若点恰好在圆上,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,圆心为坐标原点的单位圆O在C的内部,且与C有且仅有两个公共点,直线与C只有一个公共点.
(1)求C的标准方程;
(2)设不垂直于坐标轴的动直线l过椭圆C的左焦点F,直线l与C交于A,B两点,且弦AB的中垂线交x轴于点P,试求的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com