精英家教网 > 高中数学 > 题目详情

【题目】个数中一次随机地取个数,记所取的这个数的和为,则下列说法错误的是(

A.事件“”的概率为

B.事件“”的概率为

C.事件“”与事件“”为互斥事件

D.事件“”与事件“”互为对立事件

【答案】B

【解析】

列举出所有的基本事件,利用古典概型的概率公式可判断AB选项的正误,利用互斥事件的概念可判断C选项的正误,利用对立事件的概念可判断D选项的正误,综合可得出结论.

个数中一次随机地取个数,所有的基本事件有:,共种,

事件“”包含的基本事件有:,共个,则

事件“”包含的基本事件有:,则

由互斥事件的定义可知,事件“”与事件“”为互斥事件;

事件“”包含的基本事件有:,事件“”包含的基本事件有:

由对立事件的定义可知,事件“”与事件“”互为对立事件.

综上所述,ACD选项正确,B选项错误.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, ,平面 平面 分别为的中点.

(1)求证: 平面

(2)求证:

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对名小学六年级学生进行了问卷调查,并得到如下列联表.平均每天喝以上为“常喝”,体重超过为“肥胖”.

常喝

不常喝

合计

肥胖

2

不肥胖

18

合计

30

已知在全部人中随机抽取人,抽到肥胖的学生的概率为

(1)请将上面的列联表补充完整;

(2)是否有的把握认为肥胖与常喝碳酸饮料有关?请说明你的理由;

(3)已知常喝碳酸饮料且肥胖的学生中恰有2名女生,现从常喝碳酸饮料且肥胖的学生中随机抽取2人参加一个有关健康饮食的电视节目,求恰好抽到一名男生和一名女生的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,是边长为4的正方形,平面平面.

1)求二面角的余弦值;

2)在线段是否存在点,使得?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为为参数).在以坐标原点为极点,轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线的极坐标方程是.

(1)求直线的普通方程与曲线的直角坐标方程;

(2)设点.若直与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点,若T表示的内部及三边(含顶点)上的所有点的集合则二元函数()的取值范围是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果一个正整数n在三进制下的各位数字之和能被3整除,则称n为“恰当数”。求S={1,2,...,2005}中全体恰当数之和。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我市正在创建全国文明城市,某高中为了解学生的创文知晓率,按分层抽样的方法从“表演社”、“演讲社”、“围棋社”三个活动小组中随机抽取了6人进行问卷调查,各活动小组人数统计如下图:

(1)从参加问卷调查的6名学生中随机抽取2名,求这2名学生来自同一小组的概率;

(2)从参加问卷调查的6名学生中随机抽取3名,用表示抽得“表演社”小组的学生人数,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案