精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥P﹣ABCD中,底面ABCD是棱长为2的菱形,PA⊥平面ABCD,∠ABC=60°,E是BC中点,若H为PD上的动点,EH与平面PAD所成最大角的正切值为
(1)当EH与平面PAD所成角的正切值为 时,求证:EH∥平面PAB;
(2)在(1)的条件下,求二面角A﹣PB﹣C的余弦值.

【答案】
(1)证明:连接AC,由题设知△ABC为正三角形,所以AE⊥BC,

又BC∥AD,因此AE⊥AD;

∵PA⊥平面ABCD,AE平面ABCD,

∴PA⊥AE

而PA平面PAD,AD平面PAD,且PA∩AD=A,

所以AE⊥平面PAD,

则∠EHA为EH与平面PAD所成的角.

在Rt△EAH中,AE=

所以当AH最短时,∠EHA最大;

即当AH⊥PD时,∠EHA最大;

此时tan∠EHA= = =

因此AH=

又AD=2,∴∠ADH={45°}∴PA=2

∴H为PD的中点,

取PA的中点M,连接HM,MB,则HM= 且HM∥AD,DB= AD且DB∥AD,

∴HM∥DB且HM=DB

∴四边形DHMB为平行四边形

∴EH∥BM,

又BM平面PAB

∴EH∥平面PAB


(2)解:∵PA⊥面ABCD,PA平面PAB,

∴平面PAB⊥平面ABCD,

∵PB面PAB∴CM⊥PB,

∴PB⊥面CQM,∴

∴△ABC为正三角形,∴点M为AB的中点,

,∴


【解析】(1)首先要证明AE⊥平面PAD,则∠EHA为EH与平面PAD所成的角;所以当AH最短时,∠EHA最大;即当AH⊥PD时,∠EHA最大;接着利用构造平行四边形法判定线面平行即可;(2)利用已知条件证明平面PAB⊥平面ABCD,PB⊥面CQM,所求二面角转化到Rt△CQM中即可;
【考点精析】利用直线与平面平行的判定对题目进行判断即可得到答案,需要熟知平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足S= (a2+b2﹣c2).
(1)求角C的大小;
(2)求sinA+sinB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若x,y∈[﹣1,1],x+y≠0有(x+y)[f(x)+f(y)]>0.
(1)判断f(x)的单调性,并加以证明;
(2)解不等式
(3)若f(x)≤m2﹣2am+1对所有x∈[﹣1,1],a∈[﹣1,1]恒成立.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点P(m,n)的直线l与直线l0:x+2y+4=0垂直. (Ⅰ)若 ,且点P在函数 的图像上,求直线l的一般式方程;
(Ⅱ)若点P(m,n)在直线l0上,判断直线mx+(n﹣1)y+n+5=0是否经过定点?若是,求出该定点的坐标;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数对定义域内的任意,当时,总有,则称函数为单调函数,例如函数是单纯函数,但函数不是单纯函数,下列命题:

①函数是单纯函数;

②当时,函数是单纯函数;

③若函数为其定义域内的单纯函数, ,则

④若函数是单纯函数且在其定义域内可导,则在其定义域内一定存在使其导数,其中正确的命题为__________.(填上所有正确的命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张先生知道清晨从甲地到乙地有好、中、差三个班次的客车.但不知道具体谁先谁后.他打算:第一辆看后一定不坐,若第二辆比第一辆舒服,则乘第二辆;否则坐第三辆.问张先生坐到好车的概率和坐到差车的概率分别是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|log2 ≤1},B={x|x2﹣2x+1﹣k2≥0}.
(1)求集合A;
(2)若A∩B≠,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出盒该产品获利润元;未售出的产品,每盒亏损.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了盒该产品,以(单位:盒, )表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.

1)根据直方图估计这个开学季内市场需求量的中位数;

2)将表示为的函数;

3)根据直方图估计利润不少于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC,若存在△A1B1C1 , 满足 = = =1,则称△A1B1C1是△ABC的一个“友好”三角形.在满足下述条件的三角形中,存在“友好”三角形的是:(请写出符合要求的条件的序号) ①A=90°,B=60°,C=30°;②A=75°,B=60°,C=45°;③A=75°,B=75°,C=30°;④A=75°,B=65°,C=45°.

查看答案和解析>>

同步练习册答案