É躯Êýf£¨x£©=
1
4
x2+bx-
3
4
£¬ÒÑÖª²»ÂÛ¦Á¡¢¦ÂΪºÎʵÊý£¬ºãÓÐf£¨cos¦Á£©¡Ü0£¬f£¨2-sin¦Â£©¡Ý0£¬¶ÔÕýÊýÊýÁÐ{an}£¬ÆäÇ°nÏîºÍSn=f£¨an£©£¨n¡ÊN+£©£®
£¨1£©ÇóbµÄÖµ£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨3£©ÎÊÊÇ·ñ´æÔڵȱÈÊýÁÐ{bn}£¬Ê¹µÃa1b1+a2b2+¡­+anbn=2n+1£¨2n-1£©+2¶ÔÓÚÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¿²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
£¨4£©Èô
cn
=
1
1+an
£¨n¡ÊN+£©£¬ÇÒÊýÁÐ{cn}µÄÇ°nÏîºÍΪTn£¬ÊԱȽÏTnÓë
1
6
µÄ´óС£¬²¢¸øÓèÖ¤Ã÷£®
·ÖÎö£º£¨1£©Áî¦Á=0£¬¦Â=
¦Ð
2
£¬¸ù¾Ýf£¨cos¦Á£©¡Ü0£¬f£¨2-sin¦Â£©¡Ý0£¬¿ÉÖªf£¨1£©=0ÇóµÃb£®
£¨2£©¸ù¾Ýº¯Êý½âÎöʽ·Ö±ð±íʾ³öSnºÍSn+1£¬½ø¶ø¸ù¾Ýan+1=Sn+1-SnÕûÀíµÃ£¨an+1+an£©£¨an+1-an-2£©=0½ø¶øÅжϳöan+1-an=2£¬ÍƶÏÊýÁÐ{an}ÊǵȲîÊýÁУ¬ÇóµÃa1ÀûÓõȲîÊýÁеÄͨÏʽÇóµÃan£®
£¨3£©¼ÙÉè´æÔڵȱÈÊýÁÐ{bn}£¬Ê¹µÃa1b1+a2b2++anbn=2n+1£¨2n-1£©+2¶ÔÓÚÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¬Áîn=1£¬2£¬ÇóµÃb1ºÍb2½ø¶øÇóµÄÊýÁеĹ«±È£¬½ø¶ø¿ÉµÃÊýÁÐ{bn}µÄͨÏʽ£¬ÁîSn=3¡Á2+5¡Á22+¡­+£¨2n+1£©2n£¬ÀûÓôíλÏà¼õ·¨ÇóµÃSn=2n+1£¨2n-1£©+2£®Ö¤Ã÷³öa1b1+a2b2+¡­+anbn=2n+1£¨2n-1£©+2¶ÔÓÚÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£®
£¨4£©°Ñ£¨2£©ÖÐÇóµÃµÄan´úÈë
cn
=
1
1+an
ÖÐÇóµÃcn£¬ÀûÓÃÁÑÏî·¨ÇóµÃTn=
1
2
(
1
3
-
1
2n+3
)
½ø¶ø¿ÉÖ¤Ã÷Tn£¼
1
6
£®
½â´ð£º½â£º£¨1£©ÓɶÔÈÎÒâʵÊý¦Á¡¢¦Â£¬ºãÓÐf£¨cos¦Á£©¡Ü0£¬f£¨2-sin¦Â£©¡Ý0£¬
¿ÉµÃºãÓÐf£¨cos0£©¡Ü0£¬ÇÒf£¨2-sin
¦Ð
2
£©¡Ý0£¬¼´f£¨1£©=
1
4
+b-
3
4
=0£¬¿ÉµÃb=
1
2
£»
£¨2£©ÓÉSn=f£¨an£©=
1
4
an2+
1
2
an-
3
4
£¨n¡ÊN+£©£¬¿ÉµÃSn+1=
1
4
an+12+
1
2
an+1-
3
4

¹Êan+1=Sn+1-Sn=
1
4
£¨an+12-an2£©+
1
2
£¨an+1-an£©£¬¼´£¨an+1+an£©£¨an+1-an-2£©=0£¬
ÓÖ{an}ÊÇÕýÊýÊýÁУ¬¹Êan+1+an£¾0£¬¡àan+1-an=2£¬¼´ÊýÁÐ{an}ÊǵȲîÊýÁУ®
ÓÖa1=
1
4
a12+
1
2
a1-
3
4
£¬ÇÒa1£¾0£¬¿ÉµÃa1=3£¬¹Êan=3+2£¨n-1£©=2n+1£»
£¨3£©¼ÙÉè´æÔڵȱÈÊýÁÐ{bn}£¬Ê¹µÃa1b1+a2b2++anbn=2n+1£¨2n-1£©+2¶ÔÓÚÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£¬
Áîn=1£¬2£¬¿ÉµÃb1=2£¬b2=4£¬¹Ê{bn}µÄ¹«±ÈΪ2£¬´Ó¶øbn=2¡Á2n-1=2n£®
ÁîSn=3¡Á2+5¡Á22+¡­+£¨2n+1£©2n⇒Sn=2n+1£¨2n-1£©+2
¹Êa1b1+a2b2++anbn=2n+1£¨2n-1£©+2¶ÔÓÚÒ»ÇÐÕýÕûÊýn¶¼³ÉÁ¢£®
£¨4£©
cn
=
1
1+an
cn=(
1
1+an
)2=
1
(1+an)2
Tn
=
n
i=1
 
1
(2i+2)2
£¼
n
i=1
 
1
(2i+2)2-1
=
n
i=1
 
1
(2i+1)(2i+3)
£®
=
1
2
n
i=1
 (
1
2i+1
-
1
2i+3
)
=
1
2
(
1
3
-
1
2n+3
)£¼
1
6
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éµÈ²îÊýÁеÄͨÏʽµÄÓ¦Óã®Éæ¼°ÁËÊýÁеÄÇóºÍ¡¢²»µÈʽµÈÎÊÌ⣬¿¼²éÁËѧÉú½â¾öʵ¼ÊÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=lnx-ax+1£¬ÆäÖÐaΪ³£Êý£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£®
£¨2£©ÇóÖ¤£º
ln2
22
+
ln3
32
+¡­+
lnn
n2
£¼
2n2-n-1
4(n+1)
(n¡ÊN£¬n¡Ý2)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=ex¦Ì£¨x£©£¬
£¨I£©Èô¦Ì£¨x£©=x2-
52
x+2µÄ¼«Ð¡Öµ£»
£¨¢ò£©Èô¦Ì£¨x£©=x2+ax-3-2a£¬Éèa£¾0£¬º¯Êýg£¨x£©=£¨a2+14£©ex+4£¬Èô´æÔÚ¦Î1£¬¦Î2¡Ê[0£¬4]ʹµÃ|f£¨¦Î1£©-g£¨¦Î2£©|£¼1³ÉÁ¢£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýf£¨x£©µÄ¶¨ÒåÓòΪD£¬Èô¶ÔÓÚÈÎÒâx1£¬x2¡ÊD£¬µ±x1£¼x2ʱ£¬¶¼ÓÐf£¨x1£©¡Üf£¨x2£©£¬Ôò³Æº¯Êýf£¨x£©ÔÚDÉÏΪ·Ç¼õº¯Êý£®É躯Êýf£¨x£©Îª¶¨ÒåÔÚ[0£¬1]ÉϵķǼõº¯Êý£¬ÇÒÂú×ãÒÔÏÂÈý¸öÌõ¼þ£º¢Ùf£¨0£©=0£»¢Úf£¨1-x£©+f£¨x£©=1£¬x¡Ê[0£¬1]£» ¢Ûµ±x¡Ê[0£¬
1
4
]
ʱ£¬f£¨x£©¡Ý2xºã³ÉÁ¢£®Ôòf(
3
7
)+f(
5
9
)
=
1
1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Äµµ¤½­Ò»Ä££©ÏÂÁÐÃüÌâÖУ¬ÕýÈ·µÄÊÇ
£¨1£©£¨2£©£¨3£©
£¨1£©£¨2£©£¨3£©

£¨1£©Æ½ÃæÏòÁ¿
a
Óë
b
µÄ¼Ð½ÇΪ60¡ã£¬
a
=(2£¬0)
£¬|
b
|=1
£¬Ôò|
a
+
b
|
=
7

£¨2£©ÔÚ¡÷ABCÖУ¬A£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÈôacosC£¬bcosB£¬ccosA³ÉµÈ²îÊýÁÐÔòB=
¦Ð
3

£¨3£©OÊÇ¡÷ABCËùÔÚƽÃæÉÏÒ»¶¨µã£¬¶¯µãPÂú×㣺
OP
=
OA
+¦Ë(
AB
sinC
+
AC
sinB
)
£¬¦Ë¡Ê£¨0£¬+¡Þ£©£¬ÔòÖ±ÏßAPÒ»¶¨Í¨¹ý¡÷ABCµÄÄÚÐÄ
£¨4£©É躯Êýf£¨x£©=
x-[x]£¬x¡Ý0
f(x+1)£¬x£¼0
ÆäÖÐ[x]±íʾ²»³¬¹ýxµÄ×î´óÕûÊý£¬Èç[-1.3]=-2£¬[1.3]=1£¬Ôòº¯Êýy=f£¨x£©-
1
4
x-
1
4
²»Í¬ÁãµãµÄ¸öÊý2¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=
1
2
•£¨
1
4
£©x-1+a•£¨
1
2
£©x-a+2
£¨1£©Èôa=4£¬½â²»µÈʽf£¨x£©£¾0£»
£¨2£©Èô·½³Ìf£¨x£©=0ÓиºÊý¸ù£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸