精英家教网 > 高中数学 > 题目详情

【题目】在“创文创卫”活动中,某机构为了解一小区成年居民“吸烟与性别”是否有关.从该小区中随机抽取200位成年居民,得到下边列联表:已知在全部200人中随机抽取1人,抽到不吸烟的概率为0.75.

吸烟

不吸烟

合计

40

90

合计

200

(1)补充上面的列联表,并判断:能否有99.9%的把握认为“吸烟与性别”有关;

(2)用分层抽样的方法从吸烟居民中选5人出来,然后再从中抽2人出来,给小区居民谈谈吸烟的危害性,求恰好抽到“一男一女”的概率.

参考公式: .

参考数据:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

【答案】1)列联表详见解析,有99.9%的把握认为“吸烟与性别”有关;(2

【解析】

1)由条件填写列联表,然后计算10.828比较大小,做出判断;

2)分层抽样可知,男生中选4人,女生中选1人,然后一一列举出所有的基本事件和满足条件的基本事件的个数,求概率.

1)由条件可知人,

所以男生中不吸烟的人数为人,

女生中吸烟人数为人,

列联表如下:

吸烟

不吸烟

合计

40

60

100

10

90

100

合计

50

150

200

99.9%的把握认为“吸烟与性别”有关;

(2)由分层抽样可知,男生中选4人,女生中选1人,

男生设为,女生设为

则任选2人的基本事件为

,共10个基本事件,

其中恰好抽到“一男一女”的共有共4个基本事件,

则恰好抽到“一男一女”的概率是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列是公差不为零等差数列,满足;数列的前项和为,且满足.

1)求数列的通项公式;

2)在之间插入1个数,使成等差数列;在之间插入2个数,使成等差数列;……;在之间插入个数,使成等差数列,

i)求

ii)是否存在正整数,使成立?若存在,求出所有的正整数对;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1),求函数的所有零点;

(2),证明函数不存在极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左、右顶点分别为,上、下顶点分别为,左、右焦点分别为,离心率为.

1)求椭圆的方程;

2)过右焦点的直线与椭圆相交于两点,试探究在轴上是否存在定点,使得可为定值?若存在,求出点的坐标,若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形,平面.

1)证明:平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(x0).

1)当0ab,且fa)=fb)时,求证:ab1

2)是否存在实数abab),使得函数yfx)的定义域、值域都是[ab],若存在,则求出ab的值,若不存在,请说明理由.

3)若存在实数abab),使得函数yfx)的定义域为[ab]时,值域为[mamb]m≠0),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有393233个成员,一些成员参加了不止一个小组,具体情况如图所示.

现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E的焦点为F,过F的直线lE交于AB两点,与x轴交于点.A为线段的中点,则

A.9B.12C.18D.72

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知i为虚数单位,a为实数,复数z=1﹣2i)(a+i)在复平面内对应的点为M,则“”M在第四象限的( )

A.充分而不必要条件

B.必要而不充分条件

C.充要条件

D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案