精英家教网 > 高中数学 > 题目详情
3.已知tan(π+α)=2,计算
(Ⅰ)$\frac{{2cos(\frac{π}{2}+α)-cos(π-α)}}{{sin(\frac{π}{2}-α)-3sin(π+α)}}$;
(Ⅱ)$\frac{{{{sin}^3}α-cosα}}{{{{sin}^3}α+2cosα}}$.

分析 (1)利用诱导公式求出正切函数值,化简所求的表达式为正切函数的形式,求解即可.
(2)利用“1”的代换,化简函数的表达式为正切函数的形式,代入求解即可.

解答 解:(1)∵tan(π+α)=2∴tanα=2,
$\begin{array}{l}∴原式=\frac{-2sinα+cosα}{cosα+3sinα}=\frac{-2tanα+1}{1+3tanα}=-\frac{3}{7}\end{array}$
(2)$原式=\frac{{{{sin}^3}α-cosα({{sin}^2}α+{{cos}^2}α)}}{{{{sin}^3}α+2cosα({{sin}^2}α+{{cos}^2}α)}}$=$\frac{{{{tan}^3}α-{{tan}^2}α-1}}{{{{tan}^3}α+2{{tan}^2}α+2}}=\frac{1}{6}$

点评 本题考查诱导公式的应用,三角函数的化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,ze输出S的值为(  )
A.10B.-6C.3D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=ax-2其中a>0且a≠1.
(1)求f(2)+f(-2)的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2-ax+2a-3
(1)若函数g(x)=f(6x)在(-∞,1)有两个不相等的零点,求a的取值范围;
(2)若a=2,且存在实数t,当x∈[1,m](m>1)时,f(x+t)≤4x恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lg(10x+a)是定义域为R上的奇函数,h(x)=tf(x).
(1)求实数a的值;
(2)若h(x)≤xlog3x在x∈[3,8]上恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=2-x-1的定义域、值域是(  )
A.定义域是R,值域是RB.定义域是R,值域为(0,+∞)
C.定义域是(0,+∞),值域为RD.定义域是R,值域是(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在数列{an}中,设a1=a2=2,a3=4,若数列$\left\{{\frac{{{a_{n+1}}}}{a_n}}\right\}$为等差数列,则a5=48.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.49${\;}^{lo{g}_{\frac{1}{7}}3}$=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)上存在一点M,使得∠F1MF2=90°(F1,F2为椭圆的两个焦点),求椭圆的离心率e的取值范围.

查看答案和解析>>

同步练习册答案