精英家教网 > 高中数学 > 题目详情
8.在△ABC中,角A、B、C对边分别为a、b、c,且2asinA=(2b+c)sinB+(2c+b)sinC.
(Ⅰ)求角A;
(Ⅱ)若a=2,求△ABC周长的取值范围.

分析 (Ⅰ)由正弦定理得a2=b2+c2+bc,再由余弦定理得A=120°;
(Ⅱ)由余弦定理可得(b+c)2-bc=4,令b+c=t,bc=t2-4(t>2),用均值不等式可得t的范围,进而得到周长的范围.

解答 解:(Ⅰ)由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c,
即a2=b2+c2+bc,
由余弦定理得a2=b2+c2-2bccosA
故cosA=-$\frac{1}{2}$,由0°<A<180°,可得A=120°;
(Ⅱ)由余弦定理可得a2=b2+c2-2bccosA=b2+c2+bc
=(b+c)2-bc=4,
令b+c=t,bc=t2-4(t>2),由基本不等式可得t2≥4(t2-4),
解得2<t≤$\frac{4\sqrt{3}}{3}$,
则△ABC周长的取值范围为(4,2+$\frac{4\sqrt{3}}{3}$].

点评 本题主要考查了正弦定理和余弦定理的应用.在解三角形问题中一般借助正弦定理和余弦定理边化角,角化边达到解题的目的,同时考查基本不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.化简:sin4θ+cos2θ+sin2θcos2θ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义域为(-∞,0)∪(0,+∞)的函数f(x)是偶函数,且f(2)=0,又函数y=$\frac{f(x)}{x}$在(0,+∞)上是减函数,则不等式f(x)>0的解集为(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(2,+∞)C.(-2,0)∪(0,2)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.△ABC中,角A,B,C所对边分别是a、b、c,且cosA=$\frac{1}{3}$.
(1)求sin2$\frac{B+C}{2}$+cos2A的值;
(2)若a=$\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,$A=\frac{π}{3}$,$BC=\sqrt{3}$,AC=1,那么AB等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)若不等式|2x-1|+|x+2|≥m2+$\frac{1}{2}$m+2对任意实数x恒成立,求实数m的取值范围;
(2)设a,b,c大于0,且1≤$\frac{1}{a}$+$\frac{1}{2b}$+$\frac{1}{3c}$≤$\frac{2}{5}$(|2x-1|+|x+2|)对任意实数x恒成立,求证:a+2b+3c≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.下面给出的四个命题中:
①以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为(x-1)2+y2=1;
②点(1,2)关于直线L:X-Y+2=0对称的点的坐标为(0,3).
③命题“?x∈R,使得x2+3x+4=0”的否定是“?x∈R,都有x2+3x+4≠0”;
④命题:过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有2条.
其中是真命题的有①②③(将你认为正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=$\sqrt{1+x}+lgx$的定义域为(0,+∞).(结果用区间表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算下列式子的值:
(1)$\frac{1}{\sqrt{5}+2}$-($\sqrt{3}$-1)0-$\sqrt{9-4\sqrt{5}}$;   
(2)lg$\frac{3}{7}$+lg70-lg3-$\sqrt{l{g}^{2}3-lg9+1}$.

查看答案和解析>>

同步练习册答案