精英家教网 > 高中数学 > 题目详情

若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知为自然对数的底数).
(1)求的极值;
(2)函数是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

(1)当时,取得极小值0(2)存在隔离直线

解析试题分析:(1)
.        
时,.         
时,,此时函数递减; 
时,,此时函数递增;
∴当时,取极小值,其极小值为.  
(2) :由(1)可知函数的图象在处有公共点,因此若存在的隔离直线,则该直线过这个公共点.          
设隔离直线的斜率为,则直线方程为,即.                                
,可得时恒成立.
,                             
,得.                   
下面证明时恒成立.
,则
,                
时,
时,,此时函数递增;
时,,此时函数递减;
∴当时,取极大值,其极大值为.   
从而,即恒成立.
∴函数存在唯一的隔离直线
考点:函数极值最值及不等式恒成立问题
点评:第二问中首先找到两曲线的交点是求解本题的关键,给定信息中满足的不等式恒成立将其转化为求函数最值满足大于等于零或小于等于零,这样即可利用函数导数这一工具来求解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设定函数 (>0),且方程的两个根分别为1,4。
(Ⅰ)当=3且曲线过原点时,求的解析式;
(Ⅱ)若无极值点,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的导数为,若函数的图像关于直对称,且. (1)求实数的值 ;(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx-.
(1)当时,判断f(x)在定义域上的单调性;
(2)若f(x)在[1,e]上的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为大于零的常数。
(1)若函数内调递增,求a的取值范围;
(2)求函数在区间[1,2]上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的极值;
(2)当时,求的值域;
(3)设,函数,若对于任意,总存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数时取得极值.
(1)求、b的值;
(2)若对于任意的,都有成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数在定义域内的极值点的个数;
(2)若函数处取得极值,对,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求下列函数的导数(本小题满分12分)
(1)        (2)
(3)           (4)

查看答案和解析>>

同步练习册答案