精英家教网 > 高中数学 > 题目详情

已知椭圆过点和点
(1)求椭圆的方程;
(2)设过点的直线与椭圆交于两点,且,求直线的方程.

(1);(2)

解析试题分析:(1)将两点代入椭圆方程可解得的值,从而可得椭圆的方程。(2)分析可知直线的斜率存在,且。设直线的方程为,与椭圆方程联立消去得关于的一元二次方程,因为有两个交点故判别式应大于0.且可得根与系数的关系,从而可得的中点坐标,因为所以点中点的连线垂直直线,即两直线斜率之积等于。从而可求得的值。
解:(1)因为椭圆过点和点
所以,由,得
所以椭圆的方程为
(2)显然直线的斜率存在,且.设直线的方程为
消去并整理得

中点为

,知
所以,即
化简得,满足
所以
因此直线的方程为
考点:1椭圆的标准方程;2直线与圆锥曲线的位置关系问题;3两直线垂直时斜率的关系。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆C过点,两焦点为是坐标原点,不经过原点的直线与该椭圆交于两个不同点,且直线的斜率依次成等比数列.
(1)求椭圆C的方程;       
(2)求直线的斜率
(3)求面积的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的离心率为轴被曲线截得的线段长等于的长半轴长。

(1)求的方程;
(2)设轴的交点为M,过坐标原点O的直线相交于点A,B,直线MA,MB分别与相交与D,E.
①证明:
②记△MAB,△MDE的面积分别是.问:是否存在直线,使得=?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点A(3,2), 点P是抛物线y2=4x上的一个动点,F为抛物线的焦点,求的最小值及此时P点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在坐标原点,对称轴为坐标轴,焦点在轴上,有一个顶点为
(1)求椭圆的方程;
(2)过点作直线与椭圆交于两点,线段的中点为,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点分别为,离心率.
(1)求椭圆的方程;
(2)若直线)与椭圆交于不同的两点,且线段 
的垂直平分线过定点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,以原点为圆心、椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)设,过点作直线(不与轴重合)交椭圆于两点,连结分别交直线两点,试探究直线的斜率之积是否为定值,若为定值,请求出;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

巳知椭圆的离心率是.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆G:.过点(m,0)作圆的切线l交椭圆G于A,B两点.
(1)求椭圆G的焦点坐标和离心率;
(2)将表示为m的函数,并求的最大值.

查看答案和解析>>

同步练习册答案