精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2
(Ⅰ)设bn=an+1-2an,证明数列{bn}是等比数列
(Ⅱ)求数列{an}的通项公式.
(Ⅲ)设cn=2nbn,求数列{cn}的前n项和Sn
分析:(I)依题意,可求得b1=3,当n≥2时,an+1-2an=(an-2an-1),利用已知bn=an+1-2an,可知bn=2bn-1,从而可证数列{bn}是等比数列;
(Ⅱ)由(I)可求得bn=an+1-2an=3•2n-1,从而可证数列{
an
2n
}是首项为
1
2
,公差为
3
4
的等差数列,继而可求数列{an}的通项公式;
(Ⅲ)由(II)知,cn=2nbn=3n•2n,利用错位相减法可求得数列{cn}的前n项和Sn
解答:解:(I)由a1=1,Sn+1=4an+2,
有a1+a2=4a1+2,
∴a2=3a1+2=5,
∴b1=a2-2a1=3…(1分)
由Sn+1=4an+2,…①
则当n≥2时,有Sn=4an-1+2…②
②-①得an+1=4an-4an-1
∴an+1-2an=2(an-2an-1) …(3分)
又bn=an+1-2an
∴bn=2bn-1
∴数列{bn}是首项b1=3,公比为2的等比数列.…(4分)
(II)由(I)可得bn=an+1-2an=3•2n-1
an+1
2n+1
-
an
2n
=
3
4

∴数列{
an
2n
}是首项为
1
2
,公差为
3
4
的等差数列,…(6分)
an
2n
=
1
2
+(n-1)×
3
4
=
3
4
n-
1
4

∴an=(3n-1)•2n-2,…(8分)
(III)由(II)知,cn=2nbn=3n•2n,则
Sn=3(1•2+2•22+3•23+…+n•2n),…(10分)①
2Sn=3(1•22+2•23+…+(n-1)•2n+n•2n+1),②
①-②,得 
-Sn=3(2+22+23+…+2n)-3n•2n+1,…(12分)
=3(1-n)2n+1-6,
所以Sn=3(n-1)2n+1+6.…(14分)
点评:本题考查数列的求和,考查等比关系的确定,突出考查错位相减法的应用,考查综合运算与推理证明的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案