精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱中,是棱的中点.

(1)求证:

(2)求证:

【答案】(1)见详解;(2)见详解.

【解析】

(1)连接AC1,设AC1∩A1C=O,连接OD,可求O为AC1的中点,D是棱AB的中点,利用中位线的性质可证OD∥BC1,根据线面平行的判断定理即可证明BC1∥平面A1CD.

(2)由(1)可证平行四边形ACC1A1是菱形,由其性质可得AC1⊥A1C,利用线面垂直的性质可证AB⊥AA1,根据AB⊥AC,利用线面垂直的判定定理可证AB⊥平面ACC1A1,利用线面垂直的性质可证AB⊥A1C,又AC1⊥A1C,根据线面垂直的判定定理可证A1C⊥平面ABC1,利用线面垂直的性质即可证明BC1⊥A1C.

(1)连接AC1,设AC1∩A1C=O,连接OD,在直三棱柱ABC﹣A1B1C1中,侧面ACC1A1是平行四边形,

所以:O为AC1的中点,又因为:D是棱AB的中点,所以:OD∥BC1

又因为:BC1平面A1CD,OD平面A1CD,所以:BC1∥平面A1CD.

(2)由(1)可知:侧面ACC1A1是平行四边形,因为:AC=AA1,所以:平行四边形ACC1A1是菱形,

所以:AC1⊥A1C,在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,因为:AB平面ABC,所以:AB⊥AA1

又因为:AB⊥AC,AC∩AA1=A,AC平面ACC1A1,AA1平面ACC1A1

所以:AB⊥平面ACC1A1,因为:A1C平面ACC1A1,所以:AB⊥A1C,

又因为:AC1⊥A1C,AB∩AC1=A,AB平面ABC1,AC1平面ABC1,所以:A1C⊥平面ABC1

因为:BC1平面ABC1,所以:BC1⊥A1C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,点Q在棱AB上.

(1)证明:平面.

(2)若三棱锥的体积为,求点B到平面PDQ的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,且

(1)求的值及的定义域;

(2)求在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投人某种产品的宣传费,需了解年宣传费对年销售额(单位:万元)的影响,对近6年的年宣传费和年销售额数据进行了研究,发现宣传费和年销售额具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.

(I)根据表中数据建立关于的回归方程;

(Ⅱ)利用(I)中的回归方程预测该公司如果对该产品的宜传费支出为10万元时销售额是万元,该公司计划从10名中层管理人员中挑选3人担任总裁助理,10名中层管理人员中有2名是技术部骨干,记所挑选3人中技术部骨干人数为且随机变量,求的概率分布列与数学期望.

附:回归直线的倾斜率截距的最小二乘估计公式分别为:

,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,设a∈R,若关于x的不等式f(x)≥| +a|在R上恒成立,则a的取值范围是(  )
A.[﹣ ,2]
B.[﹣ ]
C.[﹣2 ,2]
D.[﹣2 ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】米勒问题,是指德国数学家米勒1471年向诺德尔教授提出的有趣问题:在地球表面的什么部位,一根垂直的悬杆呈现最长(即可见角最大?)米勒问题的数学模型如下:如图,设 是锐角的一边上的两定点,点是边边上的一动点,则当且仅当的外接圆与边相切时,最大.若,点轴上,则当最大时,点的坐标为( )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)若上单调递增,求正数的最大值;

2)若函数内恰有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数满足约束条件,的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=excosx﹣x.(13分)
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间[0, ]上的最大值和最小值.

查看答案和解析>>

同步练习册答案