【题目】在三棱锥A﹣BCD中,△ABD和△ACD是边长为2的等边三角形,,O、E分别是BC、AC的中点.
(1)求证:OE∥平面ABD;
(2)求证:平面ABC⊥平面BCD;
(3)求三棱锥A﹣BCD的表面积.
【答案】(1)见解析(2)见解析(3)4+2.
【解析】
(1)由O、E分别是BC、AC的中点,可得OE∥AB,由线面平行的判定定理可得OE∥平面ABD;
(2)连接AO,DO,可得AO⊥BC,DO⊥BC,可得∠AOD为二面角A﹣BC﹣D的平面角,由已知条件可得∠AOD=90°,则平面ABC⊥平面BCD;
(3)分别计算出S△ABC、S△ABD、S△ACD、S△CBD,相加可得求三棱锥A﹣BCD的表面积.
(1)证明:O、E分别是BC、AC的中点,可得OE∥AB,
OE平面ABD,AB平面ABD,可得OE∥平面ABD;
(2)证明:连接AO,DO,
由AB=AC=BD=DC=2,可得AO⊥BC,DO⊥BC,
可得∠AOD为二面角A﹣BC﹣D的平面角,
由BC=2,可得AO=DO,
在△AOD中,AO2+DO2=AD2,
可得∠AOD=90°,
则平面ABC⊥平面BCD;
(3)三棱锥A﹣BCD的表面积为S△ABC+S△ABD+S△ACD+S△CBD2×222222×2=4+2.
科目:高中数学 来源: 题型:
【题目】已知是两条异面直线,直线与都垂直,则下列说法正确的是( )
A. 若平面,则
B. 若平面,则,
C. 存在平面,使得,,
D. 存在平面,使得,,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三棱柱的主视图和俯视图如图所示(图中一格为单位正方形),D、D1分别为棱AC和A1C1的中点.
(1)求侧(左)视图的面积,并证明平面A1ACC1⊥平面B1BDD1
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①,,②,,③,三个条件中任选一个补充在下面问题中,并加以解答.
已知的内角A,B,C的对边分别为a,b,c,若,______,求的面积S.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为,焦距为2.
(1)求椭圆的标准方程;
(2)过点的直线与椭圆的另一个交点为点,与圆的另一个交点为点,是否存在直线使得?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,点,是曲线上的任意一点,动点满足
(1)求点的轨迹方程;
(2)经过点的动直线与点的轨迹方程交于两点,在轴上是否存在定点(异于点),使得?若存在,求出的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面坐标系中xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(为参数).以O为极点,x轴的非负半轴为极轴,建立极坐标系.
(1)求曲线C的普通方程和直线l的极坐标方程;
(2)设P为曲线C上的动点,求点P到直线l的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆上任一点到,的距离之和为4.
(1)求椭圆的标准方程;
(2)已知点,设直线不经过点,与交于,两点,若直线的斜率与直线的斜率之和为,判断直线是否过定点?若是,求出该定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解居民的用电情况,某地供电局抽查了该市若干户居民月均用电量(单位:),并将样本数据分组为,,,,,, ,其频率分布直方图如图所示.
(1)若样本中月均用电量在的居民有户,求样本容量;
(2)求月均用电量的中位数;
(3)在月均用电量为,,,的四组居民中,用分层随机抽样法抽取户居民,则月均用电量在的居民应抽取多少户?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com