精英家教网 > 高中数学 > 题目详情

对于任意实数x1,x2,max{x1,x2}表示x1,x2中较大的那个数,则当x∈R时,函数f(x)=max的最大值与最小值的差是________.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立
(1)求x0的值;
(2)若f(x0)=1,且对任意正整数n,有an=
1
f(n)
bn=f(
1
2n
)+1
,记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,求Sn和Tn
(3)若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
对任意不小于2的正整数n都成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x+k•2x+1
4x+2x+1
,若对于任意实数x1,x2,x3,均存在以f(x1),f(x2),f(x3)为三边边长的三角形,则实数k的取值范围是
-
1
2
≤k≤4
-
1
2
≤k≤4

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x),(x∈R*)对于任意实数x1、x2∈R*,都满足f(x1x2)=f(x1)+f(x2),且当x>1时,f(x)>0且f(4)=1
(1)求证:f(1)=0
(2)求f(
116
)
的值
(3)解不等式f(x)+f(x-3)≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄冈模拟)已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2,总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(1)求x0的值;
(2)若f(x0)=1,且对于任意正整数n,有an=
1
f(n)
bn=f(
1
2n
)+1
,记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,比较
4
3
Sn
与Tn的大小关系,并给出证明;
(3)在(2)的条件下,若不等式an+1+an+2+…+a2n
4
35
[log
1
2
(x+1)-log
1
2
(9x2-1)+1]
对任意不小于2的正整数n都成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)设函数f(x)=lnx+ax2-(3a+1)x+(2a+1),其中a∈R.
(Ⅰ)如果x=1是函数f(x)的一个极值点,求实数a的值及f(x)的最大值;
(Ⅱ)求实数a的值,使得函数f(x)同时具备如下的两个性质:
①对于任意实数x1,x2∈(0,1)且x1≠x2
f(x1)+f(x2)
2
<f(
x1+x2
2
)
恒成立;
②对于任意实数x1,x2∈(1,+∞)且x1≠x2
f(x1)+f(x2)
2
>f(
x1+x2
2
)
恒成立.

查看答案和解析>>

同步练习册答案