精英家教网 > 高中数学 > 题目详情
9.如图,在四棱锥C-ABDE中,F为CD的中点,BD⊥平面ABC,BD∥AE且BD=2AE.
(1)求证:EF∥平面ABC;
(2)已知AB=BC=CA=BD=2,求平面ECD与平面ABC所成的角(锐角)的大小.

分析 (1)取BC中点G点,连接AG,FG,由F,G分别为DC,BC中点,知FG∥BD且FG=$\frac{1}{2}$BD,又AE∥BD且AE=$\frac{1}{2}$BD,故AE∥FG且AE=FG,由此能够证明EF∥平面ABC.
(2)求出平面CED的法向量和平面ABC的法向量,由此利用向量法能求出面CED与面ABC所成的二面角(锐角)的大小.

解答 (1)证明:取BC中点G点,连接AG,FG,
∵F,G分别为DC,BC中点,
∴FG∥BD且FG=$\frac{1}{2}$BD,
又AE∥BD且AE=$\frac{1}{2}$BD,
∴AE∥FG且AE=FG,
∴四边形EFGA为平行四边形,则EF∥AG,
又∵AG?平面ABC,EF?平面ABC,
∴EF∥平面ABC.
(2)解:设AE=1,以AB为y轴,AE为z轴,建立空间直角坐标系,
由已知得A(0,0,0),B(0,2,0),C($\sqrt{3}$,1,0),D(0,2,2),
E(0,0,1),F($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$,1),
$\overrightarrow{EF}$=($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$,0),$\overrightarrow{CD}$=(-$\sqrt{3}$,1,2),$\overrightarrow{BD}$=(0,0,2),
∴$\overrightarrow{EF}$•$\overrightarrow{CD}$=0,$\overrightarrow{EF}$•$\overrightarrow{BD}$=0,
∴EF⊥CD,EF⊥BD,
∵CD?平面BCD,BD?平面BCD,CD∩BD=D,
∴EF⊥平面BCD.
设平面CED的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EF}=\frac{\sqrt{3}}{2}x+\frac{3}{2}y=0}\\{\overrightarrow{n}•\overrightarrow{CD}=-\sqrt{3}x+y+2z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,$\frac{\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$),
又平面ABC的法向量$\overrightarrow{m}$=(0,0,1),
设平面CED与面ABC所成的二面角(锐角)的平面角为θ,
则cosθ=|cos<$\overrightarrow{m},\overrightarrow{n}$>|=|$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{\frac{2\sqrt{3}}{3}}{\sqrt{1+\frac{1}{3}+\frac{4}{3}}}$=$\frac{\sqrt{2}}{2}$,
∴θ=$\frac{π}{4}$,
∴面CED与面ABC所成的二面角(锐角)的大小为$\frac{π}{4}$.

点评 本题考查线面平行的证明,考查二面角的大小的求法,是中档题,解题时要注意向量法的合理运用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若集合A={x|ax2+ax+1=0}中只有一个元素,则满足条件的实数a构成的集合为{4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=x4+2x2是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,离心率$e=\frac{1}{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若经过左焦点F1且倾斜角为$\frac{π}{4}$的直线l与椭圆交于A、B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,则输出的S值为(  )
A.2017B.2C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,E,E,G,H分别是棱AB,BB1,BC,CC1的中点,∠ABC=90°.则异面直线EF和GH所成的角是(  )
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在四棱锥S-ABCD中,已知SC⊥平面ABCD,底面ABCD是边长为4$\sqrt{2}$的菱形,∠BCD=60°,SC=2,E为BC的中点,若点P在SE上移动,则△PCA面积的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$\overline a=(2\;,\;\;-1\;,\;\;3)$,$\overline b=(-1\;,\;\;4\;,\;\;-2)$,$\overline c=(7\;,\;\;5\;,\;\;λ)$.若$\overline a$,$\overline b$,$\overline c$共面,则$\overline c$在$\overline a$上的投影为$\frac{18\sqrt{14}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.四棱锥8条棱所在的直线能祖成8对异面直线.

查看答案和解析>>

同步练习册答案