精英家教网 > 高中数学 > 题目详情
15.现有清华、北大、上海交大三所大学的招生负责人各一人来我市宣讲2017年高考自主招生政策,我市四所重点中学必须且只能邀请其中一所大学的负责人,且邀请其中任何一所大学的负责人是等可能的.
(Ⅰ)求恰有两所重点中学邀请了清华招生负责人的概率;
(Ⅱ)设被邀请的大学招生负责人的个数为ξ,求ξ分布列与期望.

分析 (Ⅰ)设每所重点中学邀请负责人为一次实验这是4次独立重复实验,利用独立重复实验概率计算法则即可‘
(Ⅱ) ξ的所有可能值为1,2,3,求出相应的概率,写出分布列,求出期望.

解答 解:(Ⅰ)设每所重点中学邀请负责人为一次实验这是4次独立重复实验,记“邀请清华负责人”为事件A则$p(A)=\frac{1}{3}$从而设
恰有“两所重点中学邀请清华负责人”为事件B
则$P(B)=C_4^2{(\frac{1}{3})^2}•{(\frac{2}{3})^2}=\frac{8}{27}$…(4分)
(另解:$P=\frac{C_4^2×2×2}{3^4}=\frac{8}{27}$)
(Ⅱ)

    ξ123
P$\frac{1}{27}$$\frac{14}{27}$$\frac{4}{9}$
则$Eξ=1×\frac{1}{27}+2×\frac{14}{27}+3×\frac{4}{9}=\frac{65}{27}$…(12分)

点评 本题考查了独立重复实验随机变量的概率、期望的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.(理)设向量$\overrightarrow{m}$=(2,2s-2,t+2),$\overrightarrow{n}$=(4,2s+1,3t-2),且$\overrightarrow{m}$∥$\overrightarrow{n}$,则实数s+t=$\frac{19}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC的内角A,B,C的对边分别是a,b,c,且$\frac{tanA+tanB}{tanB}=\frac{2c}{b}$.
(1)求角A的大小;
(2)若$a=2\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥S-ABCD中,平面ABCD⊥平面SAB,侧面SAB为等边三角形,底面ABCD为直角梯形,AB∥CD,AB⊥BC,AB=12,CD=BC=6.
(1)求证:AB⊥DS;
(2)求平面SAD与平面SBC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设抛物线y2=4x上一点P到直线x+2=0的距离是6,则点P到抛物线焦点F的距离为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知关于x的一次函数y=mx+n,设m∈{-1,1,2},n∈{-2,2},则函数y=mx+n是增函数的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{3}{10}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=2sin(\frac{π}{2}-x)•sinx+\sqrt{3}$cos2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在$[-\frac{π}{12},\;\frac{π}{6}]$上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.8名象棋选手进行单循环赛(即每两名选手比赛一场).规定两人对局胜者得2分,平局各得1分,负者得0分,并按总得分由高到低进行排序.比赛结束后,8名选手的得分各不相同,且第二名的得分与最后四名选手得分之和相等.则第二名选手的得分是(  )
A.14B.13C.12D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,a=1,b=$\sqrt{3}$,A=30°,则角C=(  )
A.60°B.30°或90°C.30°D.60°或120°

查看答案和解析>>

同步练习册答案