精英家教网 > 高中数学 > 题目详情
8.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}+\overrightarrow{b}$|=2,则|3$\overrightarrow{a}$-2$\overrightarrow{b}$|=2$\sqrt{19}$.

分析 由|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}+\overrightarrow{b}$|=2,可得${\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2\overrightarrow{a}•\overrightarrow{b}$=4,解得$\overrightarrow{a}•\overrightarrow{b}$,再利用向量数量积运算性质即可得出.

解答 解:∵|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}+\overrightarrow{b}$|=2,∴${\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}+2\overrightarrow{a}•\overrightarrow{b}$=4,∴4=4+4+2$\overrightarrow{a}•\overrightarrow{b}$,解得$\overrightarrow{a}•\overrightarrow{b}$=-2,
则|3$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{9{\overrightarrow{a}}^{2}+4{\overrightarrow{b}}^{2}-12\overrightarrow{a}•\overrightarrow{b}}$=$\sqrt{9×4+4×4-12×(-2)}$=2$\sqrt{19}$.
故答案为:2$\sqrt{19}$.

点评 本题考查了向量数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.方程$\frac{x^2}{k-2}+\frac{y^2}{5-k}$=1表示双曲线的一个充分不必要条件是(  )
A.2<k<5B.k>4C.k<1D.k<2或k>5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆C:$\frac{x^2}{25}+\frac{y^2}{9}$=1的左焦点为F,点M是椭圆C上一点,点N是MF的中点,O是椭圆的中点,ON=4,则点M到椭圆C的左准线的距离为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知ab<0,bc<0,则直线ax+by+c=0通过(  ) 象限.
A.第一、二、三B.第一、二、四C.第一、三、四D.第二、三、四

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=3+2t}\end{array}\right.$(t为参数),曲线C的极坐标方程为ρsin2θ-16cosθ=0,直线l与曲线C交于A,B两点,点P(1,3).求直线l的普通方程和曲线C的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图(1),已知长方形ABCD中,AB=2,AD=1,M为CD的中点,将△ADM沿AM折起,使得平面ADM⊥平面ABCM,如图(2)E为BD的中点.
(1)求证:CE∥平面ADM;
(2)求四面体EAMD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+2ax+3,x∈[-4,6]
(1)当a=-2时,求f(x)的最大值和最小值;
(2)若f(x)是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知ab>0,下面四个等式中:
①lg(ab)=lga+lgb
②lg$\frac{b}{a}$=lga-lgb
③$\frac{1}{2}$lg($\frac{a}{b}$)2=lg$\frac{a}{b}$
④lg(ab)=$\frac{1}{lo{g}_{ab}10}$
则正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若-1<a<b<1,则下列不等式中成立的是(  )
A.-2<a-b<0B.-2<a-b<-1C.-1<a-b<0D.-1<a-b<1

查看答案和解析>>

同步练习册答案