精英家教网 > 高中数学 > 题目详情

已知函数,恒过定点
(1)求实数
(2)在(1)的条件下,将函数的图象向下平移1个单位,再向左平移个单位后得到函数,设函数的反函数为,直接写出的解析式;
(3)对于定义在上的函数,若在其定义域内,不等式恒成立,求实数的取值范围.

(1)2;(2);(3)

解析试题分析:(1)由,可求出实数的值;(2)根据图象平移规则:左加右减,上加下减即可求得表达式,从而可得的解析式;(3)令,不等式恒成立可转化为关于t的二次不等式恒成立,进而转化为求函数的最值解决,利用二次函数的性质易求其最值.
试题解析:(1)由已知
(2)

(3)恒成立

 即:,在时恒成立.
解得:
解得:
综上:实数的取值范围是
考点:函数恒成立问题;函数的图象与图象变化;函数解析式的求解及常用方法;反函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数定义域和函数图像所过的定点;
(2)若已知时,函数最大值为2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)若函数为奇函数,求实数的值;
(II)若对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数交于两点且,奇函数,当时,都在取到最小值.
(1)求的解析式;
(2)若图象恰有两个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,判断的奇偶性,并说明理由;
(2)当时,若,求的值;
(3)若,且对任何不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=loga(x+1)-loga(1-x)(a>0,a≠1)
(1)求f(x)的定义域;
(2)判断f(x)的奇偶性,并给出证明;
(3)当a>1时,求使f(x)>0的x的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的定义域;
(Ⅱ)求的值,作出函数的图象并指出函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)设的定义域为A,求集合A;
(2)判断函数在(1,+)上单调性,并用单调性的定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知m为常数,函数为奇函数.
(1)求m的值;
(2)若,试判断的单调性(不需证明);
(3)若,存在,使,求实数k的最大值.

查看答案和解析>>

同步练习册答案