精英家教网 > 高中数学 > 题目详情
3.已知$α∈({\frac{π}{2},\frac{3π}{2}}),tan({α-π})=-\frac{3}{4}$,则sinα+cosα的值是(  )
A.$±\frac{1}{5}$B.$\frac{1}{5}$C.$-\frac{1}{5}$D.$-\frac{7}{5}$

分析 利用诱导公式化简已知的等式,求出tanα的值小于0,利用同角三角函数间的基本关系求出cosα的值,根据α∈($\frac{π}{2}$,$\frac{3π}{2}$),得到α的具体范围,再利用同角三角函数间的基本关系求出sinα的值,即可求出所求式子的值.

解答 解:∵tan(α-π)=tanα=-$\frac{3}{4}$<0,且α∈($\frac{π}{2}$,$\frac{3π}{2}$),
∴cosα=-$\sqrt{\frac{1}{1+ta{n}^{2}α}}$=-$\frac{4}{5}$,α∈($\frac{π}{2}$,π),
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{3}{5}$,
则sinα+cosα=$\frac{3}{5}$-$\frac{4}{5}$=-$\frac{1}{5}$.
故选:C.

点评 此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键,同时注意角度的范围,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数y=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$).
①若f(0)=1,则φ=$\frac{π}{6}$;
②若?x∈R,使f(x+2)-f(x)=4成立,则ω的最小值是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A=[0,3),B=[a,a+2).
(1)若a=-1,求A∪B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,|F1F2|=2$\sqrt{5}$,点P在椭圆上,tan∠PF2F1=2,且△PF1F2的面积为4.
(1)求椭圆的方程;
(2)点M是椭圆上任意一点,A1、A2分别是椭圆的左、右顶点,直线MA1,MA2与直线x=$\frac{3\sqrt{5}}{2}$分别交于E,F两点,试证:以EF为直径的圆交x轴于定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点A(4,0),抛物线C:x2=8y的焦点为F,射线FA与抛物线和它的准线分别交于点M和N,则|FM|:|MN|=1:$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{12}$=1的离心率为(  )
A.2$\sqrt{3}$B.$\sqrt{7}$C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$的两个焦点分别为F1,F2,点P是椭圆上任意一点,若|PF1|=4,则|PF2|=(  )
A.1B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知两条直线l1:2x+y-2=0与l2:2x-my+4=0
(1)若直线l1⊥l2,求直线l1与l2交点P的坐标;
(2)若直线l1∥l2,求实数m的值以及两直线间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若随机变量X~B(4,$\frac{1}{2}$),则D(2X+1)=(  )
A.2B.4C.8D.9

查看答案和解析>>

同步练习册答案