精英家教网 > 高中数学 > 题目详情

【题目】已知函数为自然对数的底数)

(Ⅰ)试讨论函数的零点个数;

(Ⅱ)证明:当时,总有

【答案】(1)见解析(2)见解析

【解析】试题分析:(1)先求函数导数,根据导函数零点确定函数单调性:先增后减再增,结合图像可知零点个数按两极值正负分情况进行讨论,(2)先研究差函数,根据导数可得,导函数的导数,因此,从而,得证.

试题解析:解:(Ⅰ) 零点个数即为方程的根的个数.

,则,令.

变化时, 的变化情况如下表:

单调递增

极大值

单调递减

极小值

单调递增

故可画出的草图如图所示:

由图象知:当时,函数有一个零点;

时,函数有两个零点;

时,函数有三个零点.

(Ⅱ),设函数

,则

变化时, 的变化情况如下表:

单调递减

极小值

单调递增

由上表可知,而

知, .

所以,所以,即,所以在区间上为增函数,

所以当时, .

即当时, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆中, 是椭圆的左、右焦点,过作直线交椭圆于两点,若的周长为8,离心率为.

(1)求椭圆方程;

(2)若弦的斜率不为0,且它的中垂线与轴交于,求的纵坐标的范围;

(3)是否在轴上存在点,使得轴平分?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣a(1﹣ ).
(1)若a=1,求f(x)的单调区间;
(2)若f(x)≥0,对任意的x≥1均成立,求实数a的取值范围;
(3)求证:( 1008

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试,测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子停下所需要的距离),无酒状态与酒后状态下的试验数据分别列于表

停车距离(米)

频数

26

8

2

/tr>

平均每毫升血液酒精含量 毫克

10

30

50

70

90

平均停车距离

30

50

60

70

90

已知表 数据的中位数估计值为,回答以下问题.

(Ⅰ)求的值,并估计驾驶员无酒状态下停车距离的平均数;

(Ⅱ)根据最小二乘法,由表的数据计算关于的回归方程

(Ⅲ)该测试团队认为:驾驶员酒后驾车的平均“停车距离”大于(Ⅰ)中无酒状态下的停车距离平均数的倍,则认定驾驶员是“醉驾”.请根据(Ⅱ)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?

(附:回归方程中,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行抽奖活动,规则如下:甲箱子里装有3个白球和2个黑球,乙箱子里装有1个白球和3个黑球,这些球除颜色外完全相同;每次抽奖都从这两个箱子里各随机地摸出2个球,若摸出的白球个数不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(1)在一次游戏中,求获奖的概率;
(2)在三次游戏中,记获奖次数为随机变量X,求X的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣a)2lnx(a为常数).
(1)若f(x)在(1,f(1))处的切线与直线2x+2y﹣3=0垂直.
(ⅰ)求实数a的值;
(ⅱ)若a非正,比较f(x)与x(x﹣1)的大小;
(2)如果0<a<1,判断f(x)在(a,1)上是否有极值,若有极值是极大值还是极小值?若无极值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知映射f:A→B,其中A=B=R,对应法则f:x→y=( ,若对实数m∈B,在集合A中存在元素与之对应,则m的取值范围是(
A.(﹣∞,2]
B.[2,+∞)
C.(2,+∞)
D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),数列的前项和为,点图象上,且的最小值为.

(1)求数列的通项公式;

(2)数列满足,记数列的前项和为,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= ﹣lg(x﹣1)的定义域是(
A.[2,+∞)
B.(﹣∞,2)
C.(1,2]
D.(1,+∞)

查看答案和解析>>

同步练习册答案